
Noroff University College

Bachelor’s Degree Project

Orthrus: An open-source platform towards

automated forensic data collection

Maxine Brandal Vågnes

#20340

First Supervisor: Prof. Barry Irwin, B.Sc. B.Sc (Hons.) M.Sc. Ph.D.

Second Supervisor: Emlyn Butterfield BSc (Hons), PGCHE, MSc, SFHEA

Year of Study: 2017-2020

I

NOROFF UNIVERSITY COLLEGE

STATEMENT OF ORIGINALITY

This is to certify that, except where specific reference is made, the work

described in this project is the result of the investigation carried out by the

student, and that neither this project nor any part of it has been presented,

or is currently being submitted in candidature for any award other than in

part for the Bachelor’s degree from Noroff University College.

Signed:

Maxine Brandal Vågnes

II

Abstract

HID injections have been a much-discussed attack vector, but relatively little research has

been done in regards to creating an open-source platform that would enable this attack

vector to be used for forensic purposes. Previous research is mainly concentrated on

specific attack vectors under the umbrella of HID injection and not to deliver a platform

which could enable such techniques to be executed in practice.

This paper presents the results from work done towards an open-source platform which

enables users to do HID injections, with a focus on applications in the forensic field,

such as automated data collection. The research bases its research process on what has

previously been done both in terms of formal research and open-source projects.

The primary aim of this research was accessibility and how this influences one’s design

choices whilst creating an open platform geared towards digital forensics.

III

Acknowledgements

Firstly, I want to thank the dedicated open-source community for continuously improving

the world by making their code public so that people may learn from their work. You are

truly an inspiration to many.

I will be forever grateful for the detailed and constant help I have gotten from my super-

visors; prof. Barry Irwin and Emlyn Butterfield. Without their help and encouragement,

the project would not have been.

I want to thank Johannes Tomren Røsvik for helping me with my code, coming with

suggestions and corrections for my thesis and for also making the logo of the project, as

seen in appendix B.

Finally, I would like to thank my family and my fiancée for putting up about my rants

about CircuitPython and LATEX.

IV

Contents

Abstract III

Acknowledgements IV

1 Introduction 1

1.1 Aims . 2

1.1.1 Accessible . 2

1.1.2 Maintainable . 3

1.1.3 Low investment; high yield . 3

1.1.4 Open-source . 3

1.1.5 Modular . 4

1.2 Scope and limitations . 4

1.3 Methodology . 4

1.4 Document conventions . 5

1.5 Document structure . 5

2 Literature review 6

2.1 Human interface device (HID) . 7

2.1.1 HID injection . 7

2.1.2 Injection categories . 8

2.2 Forensic process . 9

2.2.1 Good practices . 10

2.3 Similar efforts . 11

V

2.3.1 MalDuino . 11

2.3.2 USB Rubber Ducky . 12

2.3.3 Bash Bunny . 13

2.3.4 P4wnP1 . 14

2.4 Past research . 15

2.5 Summary . 17

3 Design 18

3.1 Initial design proposal . 19

3.1.1 Raspberry Pi Zero W . 19

3.1.2 Arduboy . 20

3.1.3 Adafruit Feather Adalogger . 21

3.2 Final design proposal . 22

3.2.1 CircuitPython . 22

3.2.2 Development boards . 22

3.3 Templating . 25

3.3.1 Configuration files . 25

3.4 OSL . 26

3.4.1 Parser . 27

3.4.2 OSL commandset . 28

3.4.3 Keycode command . 28

3.4.4 Consumer control code command 29

3.4.5 String command . 29

3.4.6 Looping command . 29

3.4.7 Variables . 30

3.4.8 OSL fragments . 31

3.4.9 Mouse commands . 31

3.4.10 External payload command . 32

3.4.11 Sleep command . 32

3.4.12 Printing to serial . 33

3.5 Control . 33

VI

3.5.1 Automatic . 33

3.5.2 Simple . 33

3.6 Platform specifics . 34

3.6.1 Windows . 34

3.6.2 Linux . 35

3.6.3 A world without root . 36

3.7 Example scripts . 37

3.7.1 Gain root shell in Windows . 37

3.7.2 Fast gather . 39

3.7.3 Mouse wiggler . 40

3.8 Summary . 41

4 Discussion 42

4.1 Testing . 42

4.2 Design . 43

4.2.1 Hardware . 43

4.2.2 Platform . 43

4.2.3 Unidirectionality of communication 44

4.2.4 Defined behaviour . 45

4.2.5 Software . 45

4.2.6 OSL . 47

4.3 Applications . 47

4.3.1 Digital forensics . 47

4.3.2 Penetration testing . 50

4.3.3 Setup automation . 51

4.3.4 Playtesting . 52

4.4 Reaching aims . 52

4.4.1 The user aspect . 53

4.4.2 Maintainability . 53

4.4.3 Open-source . 53

4.5 Summary . 55

VII

5 Conclusion 56

5.1 Key aspects . 56

5.1.1 Development . 57

5.1.2 Forensics . 58

5.1.3 Applications . 58

5.2 Closing statements . 59

5.3 Future work . 59

5.3.1 Features . 59

5.3.2 Forensics . 62

References 63

Appendices 68

A Code instructions 69

B Orthrus logo 70

C Logs 71

VIII

List of Figures

2.1 Malduino device (Maltronics, 2020) . 11

2.2 USB Rubber Ducky device (Hak5, 2020b) 13

2.3 Bash Bunny device (Hak5, 2020a) . 13

3.1 Raspberry Pi Zero W . 20

3.2 Arduboy device . 21

3.3 Adafruit Feather Adalogger . 22

3.4 Adafruit Trinket M0 . 23

3.5 Adafruit Feather M0 Express . 24

3.6 Adafruit Metro M4 Airlift Lite connected to buttons on a breadboard . . . 24

3.7 Windows Defender showing a that a PowerSploit script has been detected. 34

3.8 A PowerShell command prompt with administrator privileges gained after

the script in listing 3.6 had been run. 38

B.1 Orthrus logo made by Johannes Tomren Røsvik 70

IX

List of Tables

2.1 Table showing MalDuino’s command set (Seytonic, 2017) 12

3.1 Table showing OSL’s command set . 28

X

Listings

3.1 config.json . 25

3.2 Python function responsible for checking loops and execution of lines of

code . 29

3.3 OSL example code: Shows nonfunctioning code 31

3.4 OSL example code: Infinite loop where left mouse button is clicked every

five seconds. 32

3.5 OSL example code: Copying all files from Linux recursively and preserv-

ing permissions. 36

3.6 OSL example code: Method to gain Powershell with administrator rights. 37

3.7 OSL example code: Method to gain CMD with administrator rights. . . . 38

3.8 OSL example code: Forensic one-liner gathering netstat data. 39

3.9 OSL example code: Mouse wiggler . 40

4.1 List of locations in the registry in which the Orthrus can leave forensic

artefacts. 48

4.2 Entry from Event Viewer showing drivers being installed upon first con-

nection of an Orthrus device. 48

4.3 Entry from Event Viewer showing that PowerShell has been run with a

specific set of flags. 49

4.4 OSL example code: Advanced OSL example with nested looping, frag-

ments, vairables . 52

C.1 Indications in /var/log/dmesg for connecting an USB-drive to a Raspberry

Pi 3 Raspbian 10 (buster). 71

XI

C.2 Indications in /var/log/syslog for connecting an USB-drive to a Raspberry

Pi 3 running Raspbian 10 (buster). 72

C.3 Indications in /var/log/syslog for connecting an USB-drive to a Raspberry

Pi 4 running Ubuntu 19.10. 73

XII

Just because something is going to break in

the end, doesn’t mean that it can’t have an

effect that lasts into the future.

Tom Scott

1
Introduction

As more digital crime takes place, there is a potential opportunity for devices that make

digital forensic investigations quicker and more accessible to conduct; especially for those

who are not experienced in this field. This project describes the development of a prototype

hardware platform and accompanying software framework called Orthrus. Its aim is to

simplify the process by working towards an open-source platform that can facilitate this

for digital forensics investigators, especially first responders. Orthrus can also prove to

be valuable for penetration testing, offensive security as well as other branches of the

information security world.

The Orthrus prototype uses keystroke injection via USB HID injection to allow the user to

inject scripts and collect data in ways that make it a predictable and relatively easy affair

as well as cross-platform. Seeing that as close to 75% of corporations does not control

removable devices in a sufficient manner (Fabian, 2007), this approach is quite certain to

1

work in many cases, even without prior modification to the computer system. Also, it is

not unjustified to deduce that one will have an even higher success rate with consumer

systems as the techniques discussed in this paper may not be something that most users

expect to harden their system against.

One also has to remember that being a first responder and having knowledge in the

information security field is not a given. Any help that first responders can get is a step

towards a more efficient process and an easier job for people in this profession.

1.1 Aims

The main aim of Orthrus is to be accessible. That is, however, not a singular issue. Rather,

for Orthrus to be considered accessible to the demographic that this project is dedicated

to, a number of points have to be met.

1.1.1 Accessible

One of the main aims of Orthrus is to build a platform that is easy to start using for those

who are not highly skilled in programming and scripting. In other words, Orthrus has

to be accessible. While many people in the information security field might know basic

programming and scripting, making one’s own tools or having to write convoluted code in

low-level languages can be tedious and waste much valuable time. Therefore, the scripting

language OSL was created to facilitate Orthrus’ accessibility requirement, which will be

discussed in section 3.4. Following the theme of being accessible to most people, if a user

would want to make an improvement to the code, either for oneself or the community, a

programming language that was friendly to beginners would have to be chosen. Hence,

a platform that is relatively easy to use, a CircuitPython device using the CircuitPython

language, was chosen to build this project, which will be discussed in greater detail in

section 3.2.1.

2

1.1.2 Maintainable

The use of CircuitPython also has a lot to say for the maintainability of the program,

which is another goal of Orthrus. Many projects with aims similar to Orthrus, as will

be discussed in section 2.3, have chosen to write their projects in a low-level language in

a very imperative approach. CircuitPython, on the other hand, is, in comparison, more

declarative and enables users to accomplish their tasks with fewer lines of code.

1.1.3 Low investment; high yield

For Orthrus to be a viable platform to adopt into one’s toolkit, the investment into the

system, both in terms of finances and time, cannot be too high compared to the yield

one expects to get out of the project. A device cannot be too complicated to set up, for

example, having a very complicated firmware flashing process. Therefore only relatively

simple devices were considered for the design, something that is discussed in detail in

section 3.1 and 3.2.

One also has to consider that the yield of utilising Orthrus in one’s toolkit must be realistic

and defined, which the further chapters will attempt to convey.

1.1.4 Open-source

Having the code open source means that it is available to everyone to improve upon,

scrutinise as well as for educational purposes.

Researchers also argue that there is a case to be made for digital forensics tools to be

open-source as they may more comprehensively and more clearly meet the guideline

requirements than proprietary tools (Carrier, 2002). The author notes that for open source

tools to find acceptance in a legal setting, more comprehensive tests, which designs have

to be open to the public, have to be researched.

"Digital forensic tools are used to fire employees, convict criminals, and

demonstrate innocence. All are serious issues, and the digital forensic appli-

cation market should not be approached in the same way that other software

3

markets are. The goal of a digital forensic tool should not be market domina-

tion by keeping procedural techniques secret."

Brian Carrier (2002)

1.1.5 Modular

Orthrus also aim to be built in such a way that it allows for modularity, as will be discussed

in section 3.4.8, with the ultimate goal that this modularity enables the user not to have to

extensively look at and understand the underlying code to use the device. This ties into

Orthrus’ open-source nature as everyone may contribute modules to it.

1.2 Scope and limitations

This research aimed to examine the feasibility of a platform such as Orthrus existing in a

digital forensic environment and working towards that with a prototype. Hence, getting

the baseline for what such a system could be was the focal point of this research. A

crucial part of the scope, which is itself defined the scope, was to investigate solutions that

were adjacent to Orthrus’ aims and contrast the final result of Orthrus to these previous

works.

Topics that were out of scope in this research was the production of scripts for Orthrus, as

it would dilute the essence of this project, of which is the prototype towards being a viable

platform. Some scripts have, however, been produced to demonstrate the capabilities of

the platform. Extensive testing into how a user’s use of Orthrus could impact the system

(for example through forensic artefacts) was deemed out of scope, as will be discussed in

section 4.3.1, because of the highly variable nature unique scripts will have on a system.

Only the baseline configuration of Orthrus was evaluated.

1.3 Methodology

The methodology of this research is highly baked into the formation of the prototype, its

application in practice as well as testing. Therefore, a lot of the methodology will be

4

discussed in chapters 3 and 4. This is especially true for the iterative design process, as

software frameworks and environments have been investigated and changed several times

during the initial design process, as will be explained in chapter 3.

Throughout this project, open-source software and hardware have been used whenever

possible so that there is a high likelihood that all the results can be replicated by other

researchers.

1.4 Document conventions

This document, written in LATEX, uses extensively clickable hyper-references to facilitate

navigation. It adheres to the Harvard referencing standard. Code repositories will be

referenced instead of a project’s "home page" where suitable. Throughout the document,

code snippets in the form of listings will be presented. Instructions on how to obtain and

run the code that this project produced may be found in appendix A. Code fragments, such

as individual commands will be pointed out using a monospaced font.

1.5 Document structure

This document is divided into chapters which represent the major sections in the iterative

research process. In chapter 2, previous projects and research will be discussed and

evaluated, in particular how they came to shape this project’s design choices, the result of

which will be shown in chapter 3. The design and results will subsequently be evaluated

and contrasted to previous works in chapter 4 in addition to which improvements can be

done and a critical evaluation of the results concerning its intended purposes. Finally, a

closing summary will be provided in chapter 5.

5

The heart has its reasons

of which reason knows nothing.

Blaise Pascal

2
Literature review

This chapter will explore the underlying technologies and techniques that Orthrus relies

on to function. In section 2.1 concepts around HID and HID injection will be introduced.

In section 2.2, practices and conventions in digital forensics will be presented and how

they relate to this project. Subsequently, past projects and research and the established

techniques which were presented are discussed in sections 2.3 and 2.4.

As stated in chapter 1, most of the corporate devices was shown to not block USB devices

from connecting by default. One may rely upon this statistic to one’s advantage and

therefore assume that the following techniques will work with most devices. As one may

see in this chapter, the techniques this allows for are quite numerous and diverse.

6

2.1 Human interface device (HID)

A Human interface device (HID) is the term used for devices that humans may interact

with to produce some output or action. A keyboard is an example of an HID device, but

so is a web camera. In the family of HID devices, there are USB HID devices, which is a

specification by the USB Implementers’ Forum USB Implementers’ Forum (2004). It is

up to device manufacturers and developers to support these standards as they are officially

specified.

Because of the ubiquity and versatility of USB HID devices, there is a general trust that

these devices are what they say they are. This unconditional trust has been put to the test

by devices like "BadUSB" in the past (Anthony, 2014). Because of this very reason, at the

time where BadUSB was shown to the public, one recommended way of circumventing

the inherent security vulnerability was to instead use the older PS/2 standard to connect

one’s mice and keyboards. As one might imagine, such advice does not really apply today

as many modern devices, especially laptops, do not have a PS/2 connector. Hence, one

may, therefore, deduce that any vulnerability that USB have are going to affect a great

number of devices, and this is where the idea of HID injections come into play.

2.1.1 HID injection

HID (Human Interface Device) injection is the act of having a device act as an HID device,

for example, a keyboard or a mouse, and then injecting HID commands, such as keystrokes

and clicks, onto the target device. Hence, the term keystroke injection is a common term

that often is interchangeably used with HID injection, even though keystroke injection

is technically a part of the greater category that is HID injection. Another term that is

associated with HID injection is the rapid-keystroke injection attack (Tey, 2013a), which

is, as it sounds, a technique which revolves around injecting a great number of keystrokes

within a short amount of time. Onemay consider this aforementioned technique the corner-

stone of HID injection as its versatility and speed open up for many other techniques and

attacks. Nevertheless, it is important to acknowledge that the techniques underlying the

greater category of HID injection are broad and that the potential applications are diverse

and numerous. While keystroke injection might be the most common technique, using

7

HID injection to, for example, prevent the computer from going to sleep without any

substantial modification to the system is equally valuable. An example of this could be a

mouse wiggler, as shown in section 3.7.3.

A common theme of projects (examples discussed in section 2.3) that have similar methods

of injecting commands and extracting data is that many of them are arguably not suited for

a forensic environment where data confidentiality is of the highest priority. One recurring

feature is wireless connectivity which can potentially compromise the confidentiality of

data. Similarly, devices that allow connections with remote web servers can also violate

this principle, as well as introducing other variables into the equation as the data has to take

a greater distance, both physically and virtually, to its intended destination. In other words,

the ideal device for a forensic scenario is one with tightly controlled factors—behaviours

that the base platform exhibits should be defined, predictable and well-documented.

There is a great number of open-source projects using HID injection, as will be discussed

in 2.3, but the amount of formal research published about HID injection is rather meagre.

However, the underlying technologies are present and widely used (as stated in section

2.1) for different purposes other than forensics. Hence, it is an excellent candidate for

further research.

While one may argue that devices similar to Orthrus exist (for example, Bash Bunny

discussed in section 2.3.3), many are neither free nor open-source or have unwanted

behaviour such as wireless capabilities. Some proprietary devices are also often priced

so high that for many, this can be a barrier to the field of digital forensics. Hence, efforts

towards strengthening and diversifying the foundation of open-source digital forensics are

not only a matter of academic interest but also of the public good.

2.1.2 Injection categories

It is essential to make the distinction between the various techniques under the umbrella

of HID injection. In itself, it is a part of the much broader field of USB based attacks. In

an attempt to formalise and categorise the differences, one may first subdivide it into two

main categories, namely external and internal, depending on where the attack originates

from. The former describes a source of attack where the main events causing the attack

8

are happening on external devices and the latter being where the main events take place

on the host machine itself. This definition only refers to the origin of the injection (an

attack is most likely to be caused by external factors) and not the behaviour of the attack

after the first contact, as that would move into the territory of lateral movement (MITRE

Corporation, 2020), not the injection itself.

What is important to note is that an attack might not be restricted to only one category.

For example, one may have a device that listens to keystroke from a victims computer

(therefore, MITM based) to then use HID injection to either save those keystrokes to a

different place, such as a webserver. Working with these different categories require their

own set of skills to either execute or to protect against.

Hence, the categories of injection can be summed up to the following:

• External injections

– HID emulation injection

– Man-in-the-middle (MITM) based injection

• Internal injections

– User-caused injection

– Independent injection

These categories are mostly arbitrary set out of the convenience so that they may be

grouped, as such would aid in the identification and description of USB injections. As

USB devices can be emulated in software (Liao et al., 2011), the category "internal

injection" is surely an interesting attack vector. This category will, however, not be

discussed in this paper as it is widely out of scope.

2.2 Forensic process

With the evolution of computers, the evolution of crime adapted to its new digital environ-

ment. Moreover, with this, a forensic process removed from the traditional techniques of

DNA analysis has emerged, which rather cares about log files and digital forensic artefacts.

9

Hence, a very particular set of skills and practices are therefore needed.

To adhere to these principles, good practice must be followed, and thorough testing of

one’s methods must be done before the actual operation takes place.

2.2.1 Good practices

Solid principles to follow are the principles of confidentiality, integrity and availability,

also called CIA triad (Howard, 2002). It describes the three principles which should be

at the core when thinking about information security as a whole. In relation to Orthrus,

adhering to these three principles can be done through the following steps:

Confidentiality

As Orthrus gives a user the means to do many different types of modification to the

system through its scripting capabilities, there are several ways of approaching the issue

of confidentiality. First and foremost, a common scenario would be for the user to get

data from a target system unto a separate storage medium. Just like with any other storage

medium containing confidential and potentially obscene material, these must be handled

with great care as in any other forensic situation.

However, a user can also potentially use the scripting capabilities to interface with online

resources, in which the matter of confidentiality can be highly variable and unpredictable.

Hence, interfacing with either online resources or through other networks in which the

data could have its confidentiality compromised should be handled with great care.

Integrity

Integrity is important as not to spoil any evidence’s validity. The changes that the baseline

configuration of Orthrus does to the system is discussed in section 4.3.1. However, a user’s

scripts may also severely impact the validity of evidence; hence great care must be taken,

as well as thorough testing, so that this may not happen. Furthermore, if it so happens that

the data is somehow modified, these changes must be properly documented.

10

Availability

Finally, availability is something that is impacted by Orthrus quite a bit. During Orthrus’

operation, the nature of HID injection means that the target device cannot be used in the

meantime as doing so would interfere with the HID injection.

Because Orthrus has the potential to delete files through its scripting capabilities, avail-

ability may also be impacted in this way. Once again, the responsibility of care is put in

the hands of the user, as the baseline Orthrus configuration arguably does nothing in terms

of impacting availability on a target device.

Further discussions on these issues may be found in section 4.3.1.

2.3 Similar efforts

Many projects of various sizes have attempted to incorporate HID injection into their

payload delivery strategy. This section will discuss some of these devices that employ

methods similar to that of Orthrus.

2.3.1 MalDuino

Figure 2.1: Malduino device (Maltronics, 2020)

MalDuino is an open-source platform that enables a user to write HID injection scripts

(Seytonic, 2017). Its rather simplistic set of commands allows for an easy to use method

for injecting scripts into a computer.

The simplicity of MalDuino does not come with its caveats. Its command set, shown in

11

table 2.1, is rather limited. It should be noted that the command set is actually an extension

of "Ducky Script", described in section 2.3.2. While it has some interesting commands

such as returning a random integer or replaying the last command, it has no way of looping

certain commands. This makes continuous functions, such as a mouse wiggler (Orthrus

example can be found in section 3.7.3), an impossible affair. It does, however, have a very

convenient feature which is the collection of 17 keyboard layouts allowing it to work well

on computers with different localisations.

Command Description

REM Comment

DEFAULTDELAY Time in ms between every command

DEFAULTCHARDELAY Time in ms between every character

DELAY Delay in ms

RANDOM Returns a random integer

RANDOMMIN Set min random value (default 0)

RANDOMMAX Set max random value (default 100)

STRING Types the following string

REPLAY Repeats the last command n times

Table 2.1: Table showing MalDuino’s command set (Seytonic, 2017)

At the time of writing, this project has also not been updated since September 29 2017.

There are, however, some forks of the project, but they have not added all too much in

terms of functionality.

2.3.2 USB Rubber Ducky

As the MalDuino in section 2.3.1 was based upon the USB Rubber Ducky (hak5darren,

2016) from HAK5, it is no wonder that these two devices are very similar. The short-

comings of the USB Rubber Ducky are also similar to that of the MalDuino. In addition,

the process of flashing the firmware can be a bit convoluted, especially in comparison to

Orthrus and other devices.

12

Figure 2.2: USB Rubber Ducky device (Hak5, 2020b)

2.3.3 Bash Bunny

Figure 2.3: Bash Bunny device (Hak5, 2020a)

Going with the theme of HID injection devices, HAK5 also released a much more capable

device called the Bash Bunny (Hak5, 2020a). Featuring a quad-core ARM processor and

512 megabytes of RAM, it should come as no surprise that the device is simply a Linux

computer in a USB pluggable format.

It has its scripting language named "Bunny Script" which is very similar to Bash scripting

13

(which is Turing complete). It allows for a versatile and, because of its similarity with

Bash; also a familiar way of automating one’s HID injections.

However, despite all its features the project is, unfortunately, proprietary closed-source

software; an issue which will be discussed in section 4.4.3. This poses a problemwhenever

the tools need to be vetted for use in legal processes, for example, a court case. While

a larger corporation might have the legal power to persuade a court that their software

follows the utmost perfect standard when it comes to information security, such cannot

be done with a close-sourced project such as this. If the source code was open-source it

could be vetted by professionals and therefore have a much higher likelihood of being a

device that could be considered for applications such as digital forensics.

2.3.4 P4wnP1

The P4wnP1 (Dawes, 2018) and the newer P4wnP1 A.L.O.A. (Dawes, 2020) projects are

frameworks which makes a Raspberry Pi Zero W work as a platform for pentesting and

related tasks in the information security field. The frameworks are very flexible with

no static workflow, hence enabling the user to utilise the device for a diverse range of

scenarios.

Some of its features include USB device emulation, HID injection through its scripting

language HIDScript, Bluetooth connectivity, WiFi connectivity, act as different types of

network interfaces as well as remote control via either a command-line interface or a web

client. Since it is running on what is a full-fledged Linux computer, one may also run

several different programs along with P4wnP1 to aid in one’s tasks.

To control a device using P4wnP1, the Raspberry Pi Zero W creates a wireless access

point which the user can connect to either through a different computer or a smartphone.

This functionality, in comparison to many other solutions, makes it so that the user does

not have to do any hardware modifications to the Raspberry Pi itself, such as buttons.

Also, given its wireless capabilities, the user is not required to have direct physical access

apart from the initial connection of the target.

This solution is generally quite good as its versatility, and functionality can support

14

many scenarios, both for investigators acting as first-responders and for deeper and more

thorough analyses in a controlled environment. However, from a forensic standpoint, as

a P4wnP1 device is meant to be controlled wirelessly as well as transmit data wirelessly,

one may argue that such creates problems with adhering to the CIA principles. Indeed, it

is stated on the project’s repository that security is not a focus for this project.

"The whole project isn’t built with security in mind (and it is unlikely that this

will ever get a requirement)."

Rogan Dawes (2020)

Transmitting data wirelessly when proper security measures are not in place, such as

encryption, can be a great security risk. Even more so, in a forensic environment where

the data might be of a highly confidential nature as well as potentially being illegal. Hence,

it is unlikely that such a device can be used for forensically sound applications, despite its

numerous features.

2.4 Past research

Because the possibility for keystroke injection has existed for a very long time, there is a

myriad of resources available on this topic. However, when it comes to formal research,

the number of research papers are rather meagre compared to what one would expect,

given how known the technique is. Even more meagre (id est practically nonexistent)

are research papers with applications that are not in the realm of offensive security or

penetration testing, for example, digital forensics, especially in connection to work done

by first-responders.

Work has been done towards solutions that prevent keystroke injection from being possible

(Denney et al., 2019). Some researchers described a hardware-based device that analyses

the delay between keystrokes, otherwise known as the key-transition time, to create an es-

timation of its likelihood to be malicious using a classification algorithm. After publishing

the aforementioned research, the same researchers published a continuation of their work.

15

This new research paper describes a detection framework called USB-Watch, which uses,

as with their original research, a hardware-based approach and dynamic threat detection

(Tey, 2013a).

In the realm of MITM based injection, there are also work being done. The device

Malboard impersonates a user’s keystroke patterns, gathered from a USB MITIM attack

(Farhi et al., 2019). In the case of anti-virus solutions that have the capability of identifying

malicious keystroke injection, Malboard might be a serious anti-forensic challenge for the

creators of said anti-virus solutions. If the keystrokes look like inconspicuous keystrokes

being entered, one can imagine that the next step to combat such techniques would have to

be rather advanced. Luckily, the same research paper also describes a proposed detection

module which was able to use information such as the power consumption of the keyboard,

the sound of keys being pressed on the keyboard and the user’s behaviour concerning their

ability to react to typographical errors on the screen. This detection module had a 100%

success rate of detecting the impersonated keystroke made by Malboard, with neither

false positives nor false negatives being made. There is also research done in the field

of MITM based injection attacks, and how to mitigate them, with a focus on keystroke

pattern, similar to the Malboard, but with a focus on biometrics (Tey, 2013b).

The utilisation of a wired connection and USB protocols are not, however, the only

possibility. Wireless HID injection has been identified to be possible due to wireless

HID devices not encrypting the wireless stream between the HID device and the target

computer (Newlin, 2016). Researchers used the lack of encryption to spoof wireless data

packets that are sent to the target computer. In the research, it is noted that wireless

keyboards often have their wireless communication encrypted. However, in the case of

wireless mice, encryption is much rarer. Keystroke injection using a Secure Digital Input

Output (SDIO) connection has also been proposed (Does et al., 2016) as an alternative to

using USB.

16

2.5 Summary

In summary, many of the methods discussed in this chapter are building on the inherent

trust and versatility that HID USB devices are privileged to. Keystroke injection is one of

the most common techniques in the umbrella category of HID injection, but it is far from

the only technique that can be employed. While many of the devices similar to Orthrus

have a diverse feature set, none of them offer an easy but still extensible platform for use

in digital forensics, either because of their closed-sourced nature, or features that are not

compatible with standard forensic practice. Past research, albeit meagre, shows that there

are many novel ways of abusing USB HID to do one’s bidding. Further research into this

field is sorely needed.

17

One of my most productive days was

throwing away 1000 lines of code.

Ken Thompson

3
Design

During the design process, a great deal of time was spent trying to find the perfect device.

Thiswas done by attempting to create prototypes thatwould satisfy the aims and constraints

set for Orthrus, as discussed in chapter 1. This iterative design process became essential

for when it came to prototyping the final device, as knowing what methods worked with

various devices and where these methods may fall short was valuable knowledge. Also,

as one of the aims was for Orthrus to be accessible and easy to use, experiences from

working with the failed prototypes became a valuable asset.

In section 3.1 the initial design proposal will be discussed along with how these revelations

impacted the final design, of which are discussed in section 3.2. After a breif discussion on

templating in section 3.3, the design process and functions of Orthrus’ scripting language,

OSL, is subsequently discussed in section 3.4. Following this, a short description of

the two control modes of Orthrus is presented in section 3.5. Platform specifics will

18

be discussed in section 3.6 with a focus on what one can do if administrator privileges

cannot be obtained in a Linux environment. Finally, some examples written in OSL will

be presented in section 3.7.

3.1 Initial design proposal

Several devices were considered for the prototype that was to become Orthrus, including

ATMEL 32u4 based boards and the Raspberry Pi Zero W. With a focus on simplicity and

maintainability, it was soon discovered that the solutions using the aforementioned devices

were not the most elegant ones.

Most of the initial designs were oriented around embedded devices that used the ATMEL

32u4 microchip (Technology, 2020), specifically Arduboy (Arduboy, 2020) and Adafruit

Feather Adalogger (Adafruit Industries, 2020a), which can be seen in figures 3.2 and 3.3

respectively.

This chip was a central part of the initial design process as not only are most devices using

this chip generally quite cheap, but they also have a small size and have a remarkably low

power consumption.

On the question of utilising ATMEL 32u4 based boards, which many existing projects

that also focus on HID injection are using, questions arose around the lack of simplicity

around using such low-level methods to communicate with the hardware. As most existing

solutions used Arduino, such as MalDuino as discussed in section 2.3.1, it is a given that

these solutions also employ the use of C++ to program their hardware. One of the main

aims of Orthrus is to enable users to have a platform that is easy to approach and make

amendments to. Hence the issue with C++ is that it can be fairly unforgiving to users that

are not accustomed to lower-level languages.

3.1.1 Raspberry Pi Zero W

The Raspberry Pi Zero W has the ability to emulate several different devices, such as

a keyboard, mouse, internet adapter as well as a mass storage device (Barnes, 2020).

This makes it a very capable and affordable way of doing a wide range of functions that

19

Figure 3.1: Raspberry Pi Zero W

the Orthrus project aims to do. This is not a novel idea either, as the P4wnP1 projects,

discussed in section 2.3.4, use the Raspberry Pi Zero and the Raspberry Pi Zero W to run

the P4wnP1 software.

While there are several guides on how to modify the software and the firmware to do the

necessary functions that Orthrus would require, many of these are outdated. In addition,

they can be rather convoluted to a user that is unfamiliar with modifying Linux or Linux

in general for that matter. Hence, it breaks the principle of being accessible and simple

to use. The setup process must be simple, as briefly discussed in section 1.1.3. This was

also reflected in the numerous difficulties of getting the Raspberry Pi Zero W to emulate

said devices during the initial design phase. While some sought after functionality was

achieved, having all the functionality working at the same time was deemed a convoluted

matter. In broad strokes, one may say that such a setup process, even if documented

properly, would present many challenges for users who do not have experience of tinkering

with the inner workings of Linux devices. Therefore, using the Raspberry Pi Zero W was

deemed unsuitable for the Orthrus project.

3.1.2 Arduboy

These devices were evaluated as they could serve two very different purposes. The

Arduboy, as can be seen in figure 3.2, has an onboard display. Despite this, it has a very

slim and convenient form factor. Its original purpose is to act as a small handheld game

console on which hobbyists can develop their own games and programs. One proposal

20

Figure 3.2: Arduboy device

for the initial design was to create a rudimentary graphical user interface (GUI) using the

Arduboy and its libraries to facilitate easy HID injection by selecting it from a menu on

the screen.

Some prototypes were made, and they both executed their primary goal of making HID

injection easier. However, the asmaintainability andmodularitywas found to be something

that could be quite cumbersome with this setup. While it was possible to change scripts

on the fly, after a certain point, the GUI became more a hindrance than being an aid to the

user.

After some investigation and additional iterations to improve upon the design, it was

eventually superseded in favour of the Adafruit Feather Adalogger device.

3.1.3 Adafruit Feather Adalogger

While the microchip is the same as with the Arduboy, the Adafruit Feather Adalogger

has a very convenient SD card slot which can be used to store substantial amounts of

information.

Many of the problems that were identified with this design were similar to the issues that

were discovered during the viability of Arduboy, described in section 3.1.2, as the device

of choice. While the inclusion of vast storage space could be very beneficial, that alone

did not warrant the use of this device as the device of choice. Hence, instead of using

the go-to solution that is Arduino with C++, a more elegant and simplistic solution was

21

Figure 3.3: Adafruit Feather Adalogger

proposed using CircuitPython.

3.2 Final design proposal

With the knowledge of how and where the proposed devices in section 3.1 fell short

concerning the aims of the Orthrus project, the work around the final design proposal

could be initiated. While not all the development boards that were proposed for the final

design ended up functioning as intended, there are plans at making them work as will be

outlined in section 5.3.1.

3.2.1 CircuitPython

In stark comparison to many other projects that are written in lower-level languages such

as C++, Orthrus is written in Python. Specifically, it is written in a version of Python

called CircuitPython meant for low-powered microcontrollers. CircuitPython is a fork of

the MicroPython project by Adafruit to empower people that are very new to the field of

programming.

3.2.2 Development boards

Three devices were evaluated to be used in this project, namely Metro M4 Airlift Lite,

Feather M0 Express and Trinket M0, all made by Adafruit. They were chosen mainly for

the different form factor that they had in comparison with each other.

22

Adafruit Trinket M0

Figure 3.4: Adafruit Trinket M0

Trinket M0 has had the smallest form factor out of these three devices. The small form

factor would enable it to be used in offensive security applications, for example, in security

audits. Its small form factor could also allow it to be embedded into other devices, such

as a decoy USB drive or a USB cable. It’s a relatively cheap price, approximately 9 USD

according to Adafruit’s store at the time of writing (Adafruit Industries, 2020b), means

that many can be deployed in an operation.

Unfortunately, given the low storage capabilities of the device, along with some incom-

patibility of the HID CirtuitPython library, this device was not possible to work with for

Orthrus.

Adafruit Feather M0 Express

The Feather M0 Express has a much greater storage capacity than the Trinket M0. The

storage capacity of it enables it to storeOrthrus aswell as awhole set of additional payloads,

which can be very useful if no other additional device is desired to be used.

Similar to the Trinket M0 is the problem that some libraries are not supported. In the

case of the Feather M0 Express, the JSON library is not supported in this device. In the

case of Orthrus, the JSON library is essential to enable the customisability that such a tool

should have to provide the user with as much aid in their scenarios as possible. While the

JSON library can be swapped out for a customised configuration file, it was deemed out of

23

Figure 3.5: Adafruit Feather M0 Express

scope for this project, as this project merely intend to serve as a proof of concept towards

automated forensics, not the final solution.

Adafruit Metro M4 Airlift Lite

Figure 3.6: Adafruit Metro M4 Airlift Lite connected to buttons on a breadboard

The Adafruit Metro M4 Airlift Lite, seen in figure 3.6, was the CircuitPython device of

choice as it allowed for the maximum amount of customisability, given that is powered

by an ATSAMD51J19A micro-controller and an ESP32 co-processor in comparison with

the other CircuitPython devices that were evaluated to be used in this project.

While the price is much higher than the previously mentioned devices, there are also alter-

native devices that are very similar to the Adafruit Metro M4 Airlift Lite, either Adafruit

themselves or from other manufacturers that also supply devices that run CircuitPython.

24

These devices have not been tested to work with Orthrus so results may vary.

3.3 Templating

Hard-coding every command into the program may not only prove to be a messy affair

but also highly unscaleable. For example, if extra command injections are to be added to

the program, in the case that commands are hard-coded into the program, the user would

have to do so the same way. This would mean that the user would have to have a deeper

understanding of how the program works, and hence a novice programmer may not find

Orthrus approachable or useful at first glance.

3.3.1 Configuration files

Instead of hard-coded values and instructions, one may utilise configuration files or tem-

plate files that tell the program what to execute. In this scenario, the program would only

act as a mediator between the command injections specified in the template file and the

target computer. This method equates to a much more approachable tool that could be

picked up by users that may not have a deep understanding of programming. Only the

template structure needs to be understood.

There are many ways one could go about doing this. The simplest solution, especially

in terms of implementation, is to take a widely used format such as JSON or YAML. At

the time of writing, CircuitPython does not have a library that enables YAML parsing.

However, parsing JSON is still possible and therefore, will be used to structure the

configuration file.

The configuration file that Orthrus uses has some basic parameters that that complements

the functionality to its scripting language. In this configuration file, which can be seen in

listing 3.1, parameters can be set that alter how Orthrus is run.

Listing 3.1: config.json
1 {
2 "automatic": false,
3 "default_script": "routines/automatic.osl",
4 "clear": false,

25

5 "logging": true,
6 "prewait": 0
7 }

If a user requires that no input is needed for the script to execute, one may switch the

automatic parameter to true. This causes Orthrus to pick the default script, supplied as

a string to the configuration parameter default_script, to be executed.

Other useful features that the configuration file brings includes rudimentary logging by

giving the option to have lines along with their line numbers printed to the serial console.

The configuration file can also enable the clearing of the serial console for an easier

viewing experience.

To be sure that Orthrus does not run before it has had time to properly connect, one

may delay Orthrus by using the prewait parameter. Such a function is essential if

automatic execution is toggled. The prewait parameter takes a floating-point number as

an argument.

3.4 OSL

For Orthrus, implementing a rudimentary scripting language was reasoned to being a

good solution. Not only does it improve the user experience of never having to touch the

underlying code, but it also enables rapid prototyping of solutions. The scripting language

designed for the Orthrus platform is called Orthrus Scripting Language (OSL). OSL aims

to present a user with a simple but solid method of writing out HID injections. The highly

declarative nature of OSL paves the way for promoting the overarching process of an HID

injection rather than the actual code and commands that are taken to achieve it.

Orthrus still requires the user to have a basic understanding of scripting in (depending on

one’s operative system) either Powershell or Bash as Orthrus does not concern itself with

what is being injected as long as the injection is facilitated.

Through using Adafruits various HID libraries, OSL can be parsed instead of manually

writing the equivalent in CircuitPython. Consider the example written in OSL in listing

3.6, In this example, one can see the key commands taking place to get a Powershell

26

window in Windows with administrator privileges.

The full command set of OSL may be found in 3.1

3.4.1 Parser

CallingOrthrus a real scripting language is not entirely accurate. It would bemore accurate

to consider it a form of shorthand that enables a user to access functionality that one may

need when doing HID injections.

The parser works by pattern match with the commands, which are lexical tokens or

keywords. When the parser identifies a token that is in its command set, the specific

function assigned to the keyword is carried out. These tokens are only evaluated when

they are at the beginning of a line; hence one cannot chain multiple commands on the

same line. While limiting, this also forces the user to write their scripts in a procedural

and structured manner.

When anOSL file is evaluated by the program, it first goes through each line of the program

looking for variable definitions. These definitions are stored in a dictionary. After each

line has been inspected for definitions, variable substitution can take place. Once again,

each line is inspected, but this time, Orthrus is looking for if any variables have been

called using the {{<VAR NAME>}} keyword. If a matching variable name has been found

within the dictionary that hold variable definitions, these variables will be replaced with

their values. While this may indeed sound like a tedious way of doing variables, it allows

the user to define variables anywhere in the OSL file, and they would still work.

After variable substitution, the code is evaluated and executed line by line. That is, unless

either a loop occurs or OSL fragment is called, which will be explained in sections 3.4.6

and 3.4.8 respectively.

27

3.4.2 OSL commandset

Command Description

K: <KEYCODE> Keycode command.

C: <CCC> Consumer control code command.

S: <STRING> HID injects string.

SL: <STRING> HID injects string and presses ENTER.

LOOP: <INT> Demarcates the beginning of the loop and loops n times.

ELOOP Demarcates the end of the loop.

VAR: <NAME>, <VALUE> Sets variable.

<VAR NAME> Use variable.

OSL: <PATH (as string)> Run external OSL fragments within an OSL script.

M[move]: X(<INT>), Y(<INT>) Moves the mouse (X, Y coordinates).

M[click] Clicks the mouse (right or left mouse button).

EP: <PATH (as string)> Injects external payload.

SLEEP: <FLOAT> Sleeps for n seconds until executing next line.

SER: <STRING> Print string to serial console.

QUIT Quits the routine/script.

// Comment command. Line will not be evaluated.

Table 3.1: Table showing OSL’s command set

3.4.3 Keycode command

Keycode commands enable the user to inject keystrokes such as GUI which is also known

as the "Windows button". In the example above, the GUI key is paired with the R key,

forming the key-chord which opens up a dialogue box on Windows which allows the user

to run either programs or commands. In this scenario, the user intends to get a Powershell

with administrator privileges.

A full list of available keycode commands are available from Adafruit in their source

code (Adafruit, 2020) which is based upon the USB HID usage tables document (USB

Implementers’ Forum, 2004).

28

3.4.4 Consumer control code command

As aWindows machine might make a notifying sound when UAC is activated, to minimise

the possibility of getting noticed, the user uses a consumer control code to mute the

computer, namely C: MUTE. Consumer control codes ofter represent functions many

laptop and consumer keyboards have, such as volume up and down, play and pause and

other buttons with quick-access control to various functions. In short, one may regard

them as hard-coded macros that are often utilised by a wide range of users. This can be

used to OSL’s advantage, as complex functions supported by consumer control codes can

be boiled down to a single line of OSL.

3.4.5 String command

The string command, S:, takes whatever the user supplies to it and enters the string to

whichever application that is in focus. This, of course, enables the user to enter simple

text strings and combine this with other OSL commands to do whatever one needs to do.

However, an arguably more useful way of using the string command is to inject one-liner

scripts. As a convenient shorthand for S: and K: ENTER on the next line, a user can utilise

the SL: command (short for "send line"). This will send the string and subsequently press

enter, which can be very useful in a terminal environment.

3.4.6 Looping command

Introducing looping to a rudimentary scripting language posed some challenges. In a

script with looping, not only does the loop have to be parsed in a way that the code runs

in its proper order, but the code parsing the OSL commands also have to consider that

loops may be present within loops. To solve this problem, many iterations of code was

attempted. Earlier attempts only managed to parse simple loops with no recursion. To

support loop recursion, the code that took care of the looping behaviour had to be taken

out from the parser itself so that whether a block of code was in a loop, and hence should

be repeated, was evaluated not along with the rest of the code.

Listing 3.2: Python function responsible for checking loops and execution of lines of code

29

1 def code_runner(current_code):
2 if not current_code:
3 return # if not empty
4 for i, line in enumerate(current_code):
5 if config()["logging"]:
6 print(f"{i} | {line}")
7 if is_loop(line):
8 count = sanitise(line, "LOOP:", True)
9 try:
10 arg = argument(line)
11 if arg == "inf":
12 while(True):
13 code_runner(current_code[i+1:])
14 except AttributeError:
15 pass # no argument , hence no inf loop
16 rest = None
17 for _ in range(int(count)):
18 rest = code_runner(current_code[i+1:])
19 code_runner(rest)
20 break
21 if is_loop_end(line):
22 return current_code[i+1:]
23 run_code(line)

In the code from the code_runner function that can be seen in listing 3.2, the code is

ingested into the function and then evaluated whether not it is empty, signalling that either

the code or loop has ended. Subsequently, the lines of the ingested code are enumerated,

and then each line is checked if its either a standard line of OSL or the beginning of a

loop. If the line is declaring a loop, the subsequent lines will be run for as many times as

specified by the user until the end of the loop. As the same function that runs the code is

called when running code within loops, loops can exist within loops. That is if maximum

recursion depth is not exceeded.

Unlike when executing external OSL fragments, as will be explained in section 3.4.8,

variables are preserved within recursive loops, regardless of their depth.

3.4.7 Variables

Variables can be set with the VAR: command, as can be seen in listing 3.7. Then they can

be referenced in the code by using double curly braces ({{variable}}). Internally in

Orthrus, the definition of variables are set before any code execution takes place. Hence,

the placement of the variable declaration does not impact the execution of any OSL

routine.

30

3.4.8 OSL fragments

External OSL scripts can be called within any OSL file by using the command:

OSL: <path/to/OSLfile>.

This allows the user to call snippets of code that execute a predetermined set of actions,

such as bypassing UAC in Windows. These snippets of code are referred to as fragments,

and some prewritten examples are located in the ./routines/fragments/ folder in

Orthrus’ repository. Consider the scenario where a user has several scripts that all have

a section which does the same action, but apart from that, they are different in function.

By taking the common sections and refactor them to a single OSL fragment, the OSL

code can be simplified and also be much simpler to read and debug. In environments

where storage space on a device is premium, refactoring to OSL fragments can also be an

effective method in maximising one’s available storage.

Important to note is that fragments are treated as different OSL files. Hence, variable

definitions are not transferred to the OSL fragment that is called, as demonstrated in

listing 3.3.

Listing 3.3: OSL example code: Shows nonfunctioning code
1 VAR: print_this , this will be printed
2 OSL: routines/fragments/printer.osl
3 <Below is the printer.osl fragment >
4 SER: {{print_this}}
5 <This will print the string "{{print_this}}" as the variable ←↩

is not defined>

OSL fragments also allow for increased modularity as fragments made by the community

can be added to Orthrus’ repository and implemented into one’s scripts.

3.4.9 Mouse commands

Mouse commands can be issued through the M command. It requires an argument, namely

which action is to be performed. The argument that can be supplied are move and click.

Consider the following example:

M[move]: X(10), Y(10)

31

In this example, the mouse is moved ten positive units both in the X and Y axes. The

mouse command also takes negative values as well as click arguments so that the user may

also use the right and left click of the mouse.

The user can also click the mouse. If the user requires many subsequent clicks, for

example, click every five seconds (example in 3.4), one may put the click command in a

loop with an infinity argument.

Listing 3.4: OSL example code: Infinite loop where left mouse button is clicked every

five seconds.
1 LOOP[inf]
2 M[click]: left
3 SLEEP: 5
4 ELOOP

3.4.10 External payload command

The external payload command, EP: is very similar to the string command, explained in

section 3.4.5. However, instead of taking the input as a string in OSL, the input is defined

by the name of the path (for example ../payloads/ping.ps1) which then is rapidly

injected into the window in focus. This command is very useful in the scenario that one

has either a premade exploitation script that is already contained in a file, or that a script

is very long.

3.4.11 Sleep command

While simple, the sleep command SLEEP: is vital to ensure that scripts are not executed

before the target system has had the time to respond to the previous command issued.

Because the Orthrus only has one-way communication to the system, the user will have to

experiment with howmuch one’s script is supposed to sleep. The necessary delay between

commands is highly variable between systems depending on their specification as well as

which command injections and GUI manipulation the user is trying to achieve. Hence,

the user needs to appreciate this fact and adapt one’s OSL scripts accordingly.

32

3.4.12 Printing to serial

Debugging a novel scripting language with no available linters for code correction can be

a chore, especially due to the unidirectional nature of communication that HID injection

has. In addition, when one adds other ways of scripting though other languages such as

Powershell, some unforeseen bugs may arise. To mitigate this, Orthrus prints the number

of each line when the user is connected to its serial port along with complementary logging

information.

Additionally, a user may also print directly to serial themselves with the SER: command

so that the logging information is relatively more complete compared to just the output

from the python debugger.

3.5 Control

Two methods of controlling Orthrus was implemented, namely, automatic and simple.

These should cover most use-case scenarios, but additional methods of controlling Orthrus

have been planned for future expansion of the project, which will be discussed in section

5.3.1.

3.5.1 Automatic

As discussed in section 3.3.1, an automatic injection can be enabled by turning it on in the

configuration file, as seen in 3.1. Such functionality can be beneficial if a device simply

does not have a button, for example, a small device such as the Adafruit Trinket M0. It

can also be important in cases where only one script is needed and should be deployed

upon insertion of the device.

3.5.2 Simple

The "simple control" mode is the default mode. It assumes that the user has hooked up a

couple of buttons to the CircuitPython device so that three different OSL scripts may be

executed.

33

3.6 Platform specifics

In chapter 1 it was stated that the Orthrus project is aiming to work cross-platform. To

honour this aim, this section will explain the differences between the supported platforms

(Windows and Linux) and how one has to change one’s approach when dealing with

these.

3.6.1 Windows

While one may write one’s payloads, there are many pre-written payloads such as Power-

Sploit (PowerShellMafia, 2016) and the open-source payloads written for projects such as

BashBunny, as discussed in section 2.3.3.

A problem with pre-written payloads and exploits is that anti-virus suites detect them (if

they are indeed known to the suite) and either quarantine the potential threats or removes

them entirely. An example of this happening can be seen in figure 3.7. This occurs both

in the case of keystroke injection and the script merely being present on the disk. Hence,

to make the function of the payload as intended, they have to be obfuscated. PowerSploit

comes with its own set of tools to obfuscate the payloads. Other tools explicitly for

this purpose, also exist, for example, Invoke-Obfuscation (Bohannon, 2019), which is a

Powershell utility to obfuscating one’s code.

Figure 3.7: Windows Defender showing a that a PowerSploit script has been detected.

34

Invoke-Obfuscation may use many methods to obfuscate the code so that the automatic

detection is done by for example Windows Defender (Microsoft, 2020) is unable to detect

the injection attempt or the mere existence of the file for that matter. A simple method

that Invoke-Obfuscation uses is the compression function. This method compresses the

Powershell commands into a compressed and base64 encoded payload (Bohannon, 2019).

Through this function alone, most, if not all, anti-virus suites may be defeated as they often

rely on pattern matching algorithms (Zhou et al., 2008). Many other ways of obfuscating

one’s injection attempt also exist such as the anti-virus bypass utility already built into

PowerSploit (PowerShellMafia, 2016). Whichever method one ends up using, one should

note that not all anti-virus suites work in the same way. Some might incorporate more

advanced methods of detection, such as machine learning (Al-Kasassbeh et al., 2020),

which could make the task of obfuscating one’s scripts less trivial. However, in most

cases, simply obfuscating one’s scripts using relatively basic techniques should be enough

to bypass most anti-virus suites (Haffejee and Irwin, 2014).

3.6.2 Linux

Different to Windows, the diaspora of various distributions of Linux are numerous. The

same goes for the various shell environments (such as bash, fish and zhs). Hence, one

must first think of which device one will be using Orthrus on. Failing to do so could cause

scripts to cause either unintended functionality or simply to not work at all. As there is

no way for Orthrus to know what kind of system it is connected to (discussed in section

4.2.3), such information has to be provided to the script ahead of time.

Unlike in the case ofWindows, as discussed in section 3.6.1, getting "root" or administrator

access to a shell is not as easy. This is mainly because Linux distributions often ask for

a password every time a task that requires administrator privileges is attempted to be run,

usually through the command sudo. Hence, a solution as simple as the one discussed in

section 3.6.1 to gain root access to a shell (given that a user already has signed in to the

target computer) is not feasible.

Even installing new software, for example through apt install <package> requires the

input of the current user’s password. Hence one may conclude that to get the same level of

35

functionality with Orthrus with a Linux distribution as with Windows the password must,

therefore, be acquired. There exist many proposed methods to gather the password from

a target running Linux. One may attempt doing memory forensics to find the password

residing in clear text in memory (Davidoff, 2008). One may also try to gather the hashed

password and then crack the password with a different device (Hatch et al., 2001) to

then use this password in one’s scripts, a place where OSL’s variables functionality can

be convenient. There is also a vast range of ways to use common privilege escalation

techniques to bypass local security restrictions, such as gaining administrator privileges.

The project GTFOBins GTFOBins (2020) has a list of a wide range of Unix binaries with

details of how they can be used to exploited to gain root access to Unix distro. However,

this technique requires a lot of background knowledge into the system and may not apply

to many scenarios, for example, for forensic investigators acting as first-responders.

The common theme with these solutions is that they restrict the "plug-and-play" aspect

and automated nature that Orthrus is trying to achieve. In scenarios where a large amount

of additional work with other devices is required to make Orthrus a viable method to

extract data from the target system, strong and valid arguments against Orthrus’ role can

be made.

3.6.3 A world without root

One may also attempt at going at this restriction from a different angle if one set the

requirement for one’s script not to require any authentication and then build one’s script

from this presumption. Consider the example in listing 3.5, with the assumption that this

computer is a presenting only a CLI environment, a user is already signed in and that the

USB-drive is both mounted and its path is known. In this example, the script attempts

to copy all files on the target recursively whilst preserving permissions until either the

command finishes or the USB-drive runs out of storage.

Listing 3.5: OSL example code: Copying all files from Linux recursively and preserving

permissions.
1 SL: cp -a /* /mnt/h/extracted/

36

On the removable storage that the command in listing 3.5 writes the information, the result

could help a first responder in getting a general overview of the system, even though not

all files are accessible. For example, one may use the tree Linux command to get a

hierarchically structured overview of all the files and folders.

While many Linux distributions, especially those who are attempting to be user friendly,

may mount USB drives by default, a great number of distributions simply do not. One

might beg the question, and rightfully so, why one cannot simply mount the file system

from the terminal, to which the answer is, again, "one requires root". Hence, as Orthrus

lives in a world currently without root, such a possibility is unfeasible.

3.7 Example scripts

In order to provide some context on how OSL can be used with Orthrus in practice,

this section will provide some example scripts in an attempt to demonstrate Orthrus’

functionality. Further areas of applications will be discussed in section 4.3.

3.7.1 Gain root shell in Windows

One of the primary factors that enable full access to a system is to have administrator or

"root" privileges in a command prompt or "shell". Depending on what shell one wants,

there are a number of ways to acquire access to them. In listing 3.6, a Powershell window

is opened with administrator rights. This is done by using the "Run prompt" (which can

be accessed by the key combination GUI + R) and running PowerShell with a certain set

of flags. These flags cause the User Access Control (UAC) window to appear, in which the

script selects the "Yes" button and clicks it. Subsequently, PowerShell command prompt

appears, as seen in figure 3.8.

Listing 3.6: OSL example code: Method to gain Powershell with administrator rights.
1 K: GUI, R
2 SLEEP: 1
3 SL: powershell -Command "Start-Process powershell -Verb ←↩

RunAs"
4 SLEEP: 3
5 // Bypass UAC
6 K: LEFT_ARROW

37

Figure 3.8: A PowerShell command prompt with administrator privileges gained after the

script in listing 3.6 had been run.

7 K: ENTER

In listing 3.7, a CMD window is opened with administrator rights. This is done by

running the program msconfig with the parameter -5 from the Run prompt, meaning

that the fifth tab in that program will be opened. Subsequently, the OSL script will go

fourteen items down to the "Command Prompt" item and this item is selected by using

the key combination LEFT_ALT + L. Now the user is in possession of a command prompt

with administrator privileges.

Listing 3.7: OSL example code: Method to gain CMD with administrator rights.
1 VAR: sleep_time , 1
2 K: GUI, R
3 SLEEP: {{sleep_time}}
4 SL: msconfig -5
5 SLEEP: {{sleep_time}}
6 LOOP: 14
7 K: DOWN_ARROW
8 ELOOP
9 K: LEFT_ALT, L
10 SLEEP: {{sleep_time}}

These example techniques can be used as an OSL fragment, as discussed in section 3.4.8,

which would allow for rapid access.

38

3.7.2 Fast gather

There already exist several solutions that exfiltrate data, such as PowerSploit as discussed

in section 3.6.1.

The small catch with PowerSploit however, is that Powershell recognises the code and

subsequently refuses to run it. This can be mitigated in several ways, but a common

technique is to obfuscate the code, as discussed in section 3.6.1. If this is not done, even

the mere act of plugging a device can cause a script to be detected as malicious. Not only

is this behaviour destructive towards a forensic examiner’s workflow, but it can also leave

behind residual forensic artefacts that can weaken one’s case. Hence, to make sure that

one’s operation runs smoothly, it is crucial to ensure that the scripts are not only going to be

undetected by anti-virus software but also that they don’t leave additional artefacts in the

process. If, however, one writes one own’s scripts, this is far less likely to happen.

Many security professionals also write their so-called "one-liners", meaning a short script

that could, in theory, fit on one line. These are perfect in combination with Orthrus as

they demonstrate the speed and versatility that one might demand in an HID injection

platform. These one-liners are also easy to implement, as they often require little to no

changes made to them to work with Orthrus.

Consider the example in listing 3.8. The PowerShell one-liner presented in this example is

used to gather the currently active TCP connections of active processes. In this example,

firstly a PowerShell with administrator privileges is gotten by running an OSL fragment

with this functionality; a functionality described in section 3.4.8. Then the target drive

is set with a PowerShell one-liner, and finally, the forensic one-liner gathering the netstat

output is run, and the output is saved to the remote storage device. With this script,

a forensic examiner can quickly gather information about which connections the target

computer is currently making and then make decisions based on that knowledge, such as

if the computer ought to be disconnected from the internet.

Listing 3.8: OSL example code: Forensic one-liner gathering netstat data.
1 // Get PowerShell with administrator privileges
2 OSL: routines/fragments/adm_pwsh.osl
3

39

4 // Set target drive
5 SL: $target_drive = (Get-WmiObject Win32_Volume -Filter "←↩

DriveType=’2’" | ?{$_.Label -eq ’TARGET ’}).DriveLetter
6
7 // Run netstat and save to remote storage medium
8 SL: netstat -anb -p TCP | Out-File -FilePath "${target_drive}←↩

extracted\netstat.txt"

Scripts such as these can enable first responders to get a rapid overview of the situation and

gather valuable data with minimal input. It can even act as a standard protocol in which

several machines can be gathering information from at the same time without needing an

operator.

3.7.3 Mouse wiggler

A common tool in many forensic toolboxes is a mouse wiggler. The tool, often in the form

factor of a small USB device, is plugged into a device, for example, a laptop, that needs to

not go into sleep mode. Consider the following hypothetical scenario where a computer

has been seized from a suspect. The password of the computer is not known, and without

continuous activity, it is not unlikely that the computer will enable sleep mode, which will

upon waking the computer back from sleep mode, require the investigator to know the

password or any way around it. By wiggling the mouse, this scenario can be prevented for

long enough until a way around the password can be found.

As this function is rather trivial to implement with the functionality that OSL embodies,

one of the example routines of Orthrus is a simple mouse wiggler, as seen in listing 3.9.

The module also demonstrates how the scripting language makes it easy to run mouse

commands.

Listing 3.9: OSL example code: Mouse wiggler
1 LOOP[inf]
2 M[move]: X(-10), Y(-10)
3 SLEEP: 5
4 M[move]: X(10), Y(10)
5 SLEEP: 5
6 ELOOP

This example uses the LOOP[inf] command to initiate infinite looping. This allows for

40

the mouse wiggler to work indefinitely until stopped by resetting the device using the reset

button which all CircuitPython devices are supposed to have. Alternatively, the device

may be unplugged.

3.8 Summary

Throughout the design process, many potential solutions that were evaluated but did not

come to fruition served as a valuable lesson in designing a platform such as Orthrus. The

specific aims called for a design process that was considerate towards the possibility that

non-technical users interested in its functionality. This alone warranted the existence of a

scripting language such asOSL,which is both simple and rather capable compared tomany

other devices reviewed in section 2.3. With Orthrus’ aim of supporting multiple platforms,

the sensibilities of each platform were discussed, and these will have implications for

chapter 4, especially in section 4.3.1.

41

The magnitude of inadequacy you can feel

working in computer security is almost un-

paralleled. You’re exposed to the work of

seemingly superhuman subversion. This is

not your lack of sufficiency. It is the im-

maturity of our profession, expounded; not

reason to existentially fret.

SwiftOnSecurity

4
Discussion

In this chapter, the methodology of testing the final design of Orthrus will be presented.

The forensic artefacts that Orthrusmay create, even from just being plugged in, not running

any scripts and having the baseline configurationwill be discussed in 4.3.1. Design choices

will be reflected upon as well as how well those design choices stay true to the original

aims, as will be discussed in 4.4.

4.1 Testing

During the development of Orthrus, testing was an integral part of the process. For

example, will be mentioned in the section on debugging 4.2.5, finding out what went

wrong in an OSL script is not always a straight forward task to solve.

Edge case testing to find out the absolute limits of OSL were carried out after the syntax

42

was formalised. No noticeable difference between Windows and Linux was found to

severely impact the baseline Orthrus configuration, although as will be seen in section

4.3.1, precautions in relation to forensic artefacts that must be considered are different

between the operative systems.

4.2 Design

In hindsight, a lot of the decisionsmade during the design phase could have been simplified

and planned better. Some of these decisions were attributed to factors such as lack of

documentation and a limited amount of research in the area of HID injection. The general

diverse methods of carrying out HID injections were both an aid and an obstacle, as finding

a narrow set of methods that are certain to succeed posed to be a challenge.

4.2.1 Hardware

The CircuitPython devices that were evaluated for the project was, as discussed in section

3.2.2, found to be highly variable in what functions they supported that were needed for

this project. Out of the three that were evaluated, only one device had all the functionality

required.

Going towards future expansions of the Orthrus software, the lower tier CircuitPython

devices, in general, might not be capable of running Orthrus as there is simply far too little

storage and not enough support for libraries such as the HID library and the JSON library.

One might expect that similar limitations with further expansions to the Orthrus software

can occur; hence it may further break the ideal solution that user would be able to run the

software on the most CircuitPython devices, thus breaking compatibility. Going towards

the future, this problem must be addressed, and solutions which can expand compatibility

have to be investigated.

4.2.2 Platform

The complexity of the existing solutions was known to be rather unscaleable and un-

sustainable. The initial research was mainly centred around if the method behind these

43

devices could be simplified and improved. It was shown, as demonstrated in section 3.1,

that the methods that previous attempts were centred around were viable (in terms of

maintainability) until a certain point where the codebase became merely too complicated

for most people to contribute to.

The P4wnP1 project discussed in section 2.3.4 has an extensive range of application

because of its many functions and versatility. With this functionality, however, there is

a massive codebase behind it which makes it tick. While the codebase is written in a

higher-level language, bing JavaScript, with more efficient modules written in Go, it is

a rather daunting task for volunteers to take on and contribute code to. Orthrus means

to counter-act this by offering the entirety of the code in one simple language, being

CircuitPython.

4.2.3 Unidirectionality of communication

An inherent weakness of devices that are solely relying on HID injection to get the work

done is the intrinsic nature of the unidirectional communication that such entails.

While serial connections to and from the target device are possible, it is not only highly

dependent on the target device of choice, but its reliance upon many uncertain factors

makes it a rather unforgiving method of communication. Imagine the scenario where one

would want to communicate information through a serial connection between Orthrus and

a target computer. First of all, the serial connections have to be enabled on the target

device. Then, the device that is attacking must have the capability and authorisation to

access the serial device to communicate to it. Finally, the device attacking must also have

the ability to store the received information and potentially processing it in someway. Such

a scenario would call for a much more advanced and complex pipeline than what Orthrus

can offer while still trying to be a simple platform that can be approachable. Many devices,

such as the Adafruit Metro M4 Airlift Lite used for this project, has a rather low internal

memory. There are of course different devices that offer far greater expandable storage,

for example in the form of an insertable memory card, but the added complexity can be

argued to defeat the purpose of having the platform is simple and approachable.

There exist, of course, a possibility of using methods of communication that transcends

44

the limitations that serial communication might facilitate, but that also adds complexity.

A really interesting project related to this is the exfiltration of data using LED status

indicators (Zhou et al., 2017). The current solution where the communication is still

unidirectional, and where one device is in charge of the execution of commands whilst the

other is in charge of storage, is a straightforward solution that allows for customisability

and maintainability.

4.2.4 Defined behaviour

As stated as one of the original aims, the behaviour has to be defined, as discussed in

sections 1.1.3 and 2.1.1. Having a clearly defined and documented behaviour is essential

for Orthrus to facilitate the automation of a forensic process. A large part of this is to

have the forensic artefacts that the baseline Orthrus configuration creates be documented,

which will be discussed in section 4.3.1.

4.2.5 Software

In comparison to using Arduino and C++ as described in section 3.1, CircuitPython was

proven to be easy to work within many more ways than just the process of writing the

code.

However, it is essential to note that it is not as simple as one might think. There are differ-

ences between Python, MicroPython and CircuitPython. Python, and its documentation,

is, of course, the baseline of what the language can do, but not all Python functions are

possible to use in the two latter languages. While the syntax may be close to identical, one

is working with a completely different set of hardware targets where one’s code is sup-

posed to run. Hence, efficiency, low memory footprint and low requirements for storage

are all factors that are vital for MicroPython and CircuitPython to be a valid alternative to

lower-level languages such as C++.

The programmer must also take the situation in mind, being that the target is not a decently

powerful desktop computer. This paradigm shift in thinking can be difficult when using a

language as permissible and forgiving as Python often is regarded as. One example that

was encountered during the testing phase of the different CircuitPython devices concerning

45

this different way of thinking was the small storage capabilities and memory limitations

discussed in 3.2.1. One might think that this is mostly a hardware problem, and one

would be correct, but the implications for the software side of things are the interesting

part of the story. For example, on a desktop computer, one may be used to use as many

external pre-written libraries as possible to minimise the time spent writing code and

making one’s program. Given that neither memory limitations nor storage limitations are

usually frequent problems on a desktop computer, this way of thinking makes sense. On

a low-power device such as embedded devices, however, one might find oneself writing

more custom code to fit one’s purpose rather than adapting one’s solution to prewritten

libraries. This is, of course, a more time consuming and labour-intensive process, but it

is indeed necessary for Python to work in environments such as these. A side effect of

not being able to import all kinds of libraries that might contain code that is not strictly

necessary for one’s program to run is that the code base is usually less bloated and is,

therefore, easier to debug.

The vision of universal compatibility between CircuitPython devices that was envisioned

in the stages towards the final design was unfortunately not achieved. Further research is

needed to enable Orthrus not only to run but be certified to work on multiple devices fully.

This issue will be further explained in section 5.3.1.

Debugging

Debugging on an embedded device, even though the syntax looks like Python, can prove

more challenging than with one’s more standard workflow on just a desktop machine.

Also, since Python is an interpreted language, the debugging process is unique compared

to development on other embedded platforms such as Arduino. From the research done, it

was discovered that debug and error messages were not completely similar to that of what

one would expect from Python running on a desktop computer. One might say, rather

fittingly, that the debug messages were more minimal and not as clear compared to what

a Python programmer might be used to.

There is also the difference that debugging with the device is done through a serial

connection. Hooking up one’s debugger of choice is, therefore, a difficult affair, which

46

means that different (and often more simplistic) methods have to be utilised instead. In the

case of Orthrus’, having a way of printing to serial, as discussed in section 3.4.12, in an

easy manner was therefore deemed vital to the creation process. Also, being that Orthrus

is attempting to stand as a viable platform where you should not have to touch the source

code, this function is also highly useful for users in general. The serial printing command

is, of course much more powerful in conjunction with the opportunity for variables in

OSL.

4.2.6 OSL

While the original idea and design behind Orthrus did not include its own scripting

language, the iterative research process pointed in the direction that it would allow for a

much broader utility spectrum to a wider range of diverse fields in technology where HID

injection-based automation could be utilised.

4.3 Applications

While Orthrus is originally intended to be used in digital forensics operations, it was also

designed to be as universal as possible; hence the possibility to be used in different fields

are definitely present. In broad strokes, one may say that in places where automation in

software is not possible on the device itself, and one also has the possibility to connect an

external device through the USB port, Orthrus may be utilised.

4.3.1 Digital forensics

One of the main aims of the initial design of Orthrus was to enable the automation of

tasks frequently done in the field of digital forensics. However, it evolved into something

more general that could facilitate automation through HID injections in several informa-

tion security fields. Despite this, the focus was constantly geared towards its potential

applications in the field of digital forensics.

Therefore, a focus point of the project after the initial code was finalised was to reveal

what the changes to a system were after interfacing with an Orthrus device. While highly

47

dependant on the system that is connected to, some forensic artefacts were produced by

Orthrus. Also, do note that changes done to the system as a direct effect of scripts being

run will not be evaluated, as the forensic artefacts of such actions would be highly variable

to each unique script. While onemight anticipate certain actions to be logged, for example,

unsuccessful attempts at using sudo, it would mostly be guesswork, and as such, this is

left to the individual examiner to evaluate.

Windows

For Windows devices, the registry (accessible through for example the Registry Editor)

recorded Orthrus connecting through USB. For example, as can be seen in listing 4.1,

several places in the registry changed and recorded that an Adafruit Metro M4 Airlift Lite

device had connected. Information such asmodel number, product name andmanufacturer

may, of course, be found.

Listing 4.1: List of locations in the registry in which the Orthrus can leave forensic

artefacts.
1 Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\←↩

DeviceClasses
2 Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\←↩

STORAGE
3 Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB
4 Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\←↩

USBSTOR
5 Computer\HKEY_LOCAL_MACHINE\SYSTEM\MountedDevices

Similar evidence may be found in the Event Viewer, especially upon the first connection

with an Orthrus device where evidence of driver installation may be found. An example

of this can be seen in listing 4.2.

Listing 4.2: Entry fromEvent Viewer showing drivers being installed upon first connection

of an Orthrus device.
1 A driver package which uses user-mode driver framework version←↩

2.31.0 is being installed on device SWD\WPDBUSENUM_??←↩
_USBSTOR#DISK&VEN_ADAFRUIT&PROD_METRO_M4_AIRLIFT&REV_1.0#A←↩
&1941627&0&7242B8072345733502020293A093B0FF&0#{53F56307-←↩
B6BF-11D0-94F2-00A0C91EFB8B}.

While only baseline Orthrus configurations are evaluated forensically in this research, it is

48

important to note that other forensic artefacts that can manifest from running pre-written

scripts that anti-virus suites deem malicious, as discussed in 3.6.1. Forensic artefacts

can also be produced by scripts that bypass User Account Management (UAC) which are

viewable in the Event Viewer. Also, if PowerShell is run with flags, such as in listing

3.6, these events are also logged in the Event Viewer; an example of which can be seen in

listing 4.3.

Listing 4.3: Entry fromEvent Viewer showing that PowerShell has been runwith a specific

set of flags.
1 NewEngineState=Available
2 PreviousEngineState=None
3 SequenceNumber=13
4 HostName=ConsoleHost
5 HostVersion=5.1.19041.1
6 HostId=c092800d-a30b-4b7c-a9e5 -71639daec419
7 HostApplication=C:\WINDOWS\system32\WindowsPowerShell\v1.0\←↩

PowerShell.exe -Command Start-Process cmd -Verb RunAs
8 EngineVersion=5.1.19041.1
9 RunspaceId=88c5625a -676e-4645-8ecb-83c95fe03eaf

Linux

The evidence of a device having connected is also evident on Linux. One of the most

common places to look for such information is the log files, most commonly found in

/var/logs/. Both Orthrus itself and a USB-drive were investigated for such forensic

artefacts. In listing C.1, one may see the output from /var/log/dmesg which describes

the recorded events that took place after the USB-drive was connected. One may clearly

see that it is a mass storage device is connecting to the Raspberry Pi 3 (one of the devices

used for testing Linux functionality) and going through its setup procedures. From the

information in dmesg, one may see its storage capacity (being 120 megabytes), its serial

number and whether or not it is write-protected. In listing C.2, the syslog describes a

similar story, in addition to a few new pieces of information such as its mount point

(/media/pi/TARGET). The syslog also shows us that this system it is connected to (the

Raspberry Pi 3) has an auto-mounting feature, as stated by one of the entries, being

(...) Got automount request for (...) on the very last line of the aforemen-

tioned listing.

49

When connecting the Orthrus device to a Raspberry Pi 4 running Ubuntu 19.10, one could

also see a syslog being populated with entries, as can be seen in listing C.3. Information

such as the product name (being Metro M4 Airlift Lite) and manufacturer (Adafruit

Industries LLC). Onemay also see that Orthrus has established a communication port from

the entry stating (...) cdc_acm 1-1.1:1.0: ttyACM0: USB ACM device (...).

The ttyACM0 device is a USB Abstract Control Model device which is a standard of

communication that microcontrollers often use (Tardieu, 2018). In short, one may say this

is a way for serial devices to use USB to communicate with a host (Microchip Technology,

2004).

One may also see that a usbhid device has been registered. In a scenario where such

information is presented, and one has to conclude whether or not a malicious device has

been used, one only has to look at the clear evidence. Having the knowledge that a USB

HID device has been connected, along with the fact that a device that is clearly not a

keyboard (as per the product name), one may with high confidence say that this device is

indeed likely to be impersonating an HID device. Thus, this revelation warrants further

research into the matter. Indeed, just a few lines down, even further evidence in the syslog

may be found that this device is certainly impersonating not only a keyboard but also a

mouse device and a consumer control device. It is also revealed that the device that was

connected, id est the Orthrus device, also has a storage capacity of two megabytes.

The syslog files have every entry in it marked with both a date and time stamp, which could

be very useful in a forensic investigation. That is if one is certain that the information has

not been tampered with. This is admittedly something a device such as Orthrus could do

only if administrator rights had been obtained, as sudo is needed to both copy, remove or

edit the syslog file.

4.3.2 Penetration testing

Penetration testing is an obvious field where Orthrus may shine. Obvious, because

HID/keystroke injection is a common technique in many on-premise security audits. This

can be attributed to its proficiency of rapid injection, for example, to enable a backdoor to

the system without arousing much suspicion by using the keyboard.

50

One of the scenarios in mind when creating the many iterations of Orthrus was using

it in combination with a separate storage device. This way, scripts could be used to in-

struct the target device to send information to the said storage device and not be limited

by the small storage space that Orthrus would have (approximately 2 megabytes of stor-

age). This method of extracting data from a system is also where Orthrus got its name,

as its "two-headedness" could remind one of the two-headed dog Orthrus from Greek

mythology.

It would indeed be possible only to use a CircuitPython device if such a device had enough

storage. However, no such device is widely available at the time of writing. Even if such a

device currently existed, one may questions its suitability in this project, as the inclusion

of higher storage space would very likely also increase its cost.

4.3.3 Setup automation

A very likely and useful use-case for Orthrus is the automation of setup processes. In

the scenario that a forensic examiner needs to boot to a specific distribution of Linux

from for example a memory stick on a target device, Orthrus can be used to set the Linux

distribution to be initialised with a specific set of parameters and settings. This would be

an excellent use case for live forensics as booting from a memory stick and doing analysis

this way is a rather common task. While there are alternatives to setting up devices, for

example through a Bash script, Orthrus could serve as an alternative way of doing so

where the aforementioned method with Bash is somehow not feasible.

In theory, one could not only use Orthrus for setup automation in the case of desktop

computers but also mobile devices that are mainly touch-oriented. Similar as in the

previous scenario, one could automate the setup process of a device to have a certain set of

features enabled. It should be noted, however, that systems that have a strong reliance on

touch input might be difficult to control and will probably prove to pose extra challenges

to the user in comparison to, for example, a desktop computer.

51

4.3.4 Playtesting

Orthrus’ versatility also enables users in other fields than those directly involved with

digital forensics or other fields in close proximity In listing 4.4 one can imagine the

scenario where a playtester wants to investigate the possibility of recognising automated

behaviour from a player which uses these kinds of methods to progress in a game, hence

giving them an unfair advantage. As raw input into a video game console can be harder to

detect than if a malicious user was using only software (that often anti-cheat solutions can

identify), this gives such a playtester an easy to use the platform to test their hypotheses

with much less work and much higher accuracy.

Listing 4.4: OSL example code: Advanced OSL example with nested looping, fragments,

vairables
1
2 VAR: print_this , this will be printed to serial
3
4 LOOP[inf]
5 OSL: routines/fragments/target_enemy.osl
6 LOOP: 2
7 M[click]: LEFT_BUTTON
8 ELOOP
9 SER: {{print_this}}
10 OSL: routines/fragments/move_character.osl
11 M[click]: RIGHT_BUTTON
12 K: ENTER
13 ELOOP

While gamepad support is not yet implemented in Orthrus, such is entirely possible, and

Adafruit has, at the time of writing, recently included rudimentary support for gampad

controls in their CircuitPython libraries. Including gampad support can further diversify

Orthrus’ use cases in the different fields of automated testing.

4.4 Reaching aims

While making an HID injection device has been completed, the project cannot be regarded

as successful unless the overarching goals also have been completed. This section will

discuss this aspect of the research.

52

4.4.1 The user aspect

There have been surveys done on the user-friendliness of digital forensics tools. In the

survey, consisting of 115 people, it was found that the tools that they tested were not

considered user-friendly and that they were unintuitive (Hibshi et al., 2011). While the

tools tested are very different in both goal and function from Orthrus, one may argue that

there is a trend among popular proprietary solutions that the software tends not to be either

intuitive or user-friendly. One can attribute this to the vast range of functionality that is

needed in such software, as information can be hidden in various ways. Still, there is a

case to be made for tools that are simple to use and offer a smaller set of functions, which

was discussed in the aforementioned survey.

4.4.2 Maintainability

Compared to the initial design where convoluted C++ code was produced to facilitate

simplistic HID injections, the current code is compact and mostly self-explanatory in

comparison. One often talks about pythonic code being self-documenting, and in the

case of Orthrus, one may argue that such is the case. For a beginner, the balance

between abstractions and imperativeness should provide a goodmiddle ground for not only

understanding the software but also encourage participation in the further development of

Orthrus.

Maintainability also depends on the further development and support of the open-source

community into the MicroPython and CircuitPython ecosystem. As engagement is cur-

rently quite high, this factor should not be a major hindrance towards expanding upon the

Orthrus software.

4.4.3 Open-source

While having open-source tools is excellent for it being more accessible to more people

(although it should be noted that open-source does not always mean free), one may argue

that the biggest benefit is that the examiner or other experts in the forensic field being

able to review the code. Alfred Korzybski, a renowned philosopher, once said, "the map

is not the territory". In other words, the map is not the ground truth, and neither is a

53

compiled program. That the source code is able to be reviewed and scrutinised is essential

in understanding its actual functions. Also, being able to take that code, compile it and

have a version that one can without a doubt say is as close to the ground truth as possible,

is invaluable especially so when one thinks about the life-changing decisions that can be

taken depending on what evidence that is found (Altheide and Carvey, 2011).

There is also an issue with obsolescence. Proprietary solutions, both tools and formats,

may have their support dropped by the company that distribute said software, formats

or licences to these. Hence, these solutions will not be updated and therefore, become

obsolete. In a field such as digital forensics where the technological development is very

fast-paced, using obsolete software is close to useless as it could potentially mean that

much data is not gathered, hence giving an incomplete picture of a case. The issue of

obsolescence also ties into working with older cases which used the now obsolete software.

Imagine the scenario in which an old case have to be reopened and that the evidence has

to be reexamined. In the case of the material is using software that is obsolete, or even

worse, possibly not distributed anymore, one might find oneself in a hopeless situation.

Of course, one may use the current and more modern tools to reexamine the evidence

from scratch, but that is if one still has the evidence, which depending on the jurisdiction,

might not be a viable alternative.

If the tool was open-source, however, the community could continue to update this software

so that the aforementioned scenarios would never an issue in the first place. Even if the

software were only minimally supported, such compatibility updates, by the open-source

community, this would be enough for at least most worst-case scenario to never happen,

being that the software cannot even be run.

There was a tendency for a long time that the field of digital forensics was dominated

by closed-source tools (Altheide and Carvey, 2011). Given the aforementioned reasons

why this can be detrimental to, for example, an investigation, it is therefore vital that

the digital forensics community, therefore, start investing their expertise into open-source

solutions.

Because of all this, Orthrus is open-source and licenced under the GNU General Public

License v3.0.

54

4.5 Summary

This chapter has underlined the importance of understanding one’s aims, how to conform

to them and to identify areas where one might be lacking. For Orthrus specifically,

most of the aims are perceived to be successfully achieved, although some areas might

warrant more research. While the forensic impact in terms of artefacts was discussed in

section 4.3.1, this area could be expanded upon to include research into how a user might

introduce forensic artefacts as well; a point which will be discussed more in section 5.3.1.

The importance and values of havings one’s source open to the public were also discussed

and how that especially relates to the field of digital forensics.

55

Everyone knows that debugging is twice as

hard as writing a program in the first place.

So if you’re as clever as you can be when

you write it, how will you ever debug it?

Brian Kernighan

5
Conclusion

This research aimed to develop a platform which was accessible to users of various levels

of technical skills. Its focus was especially on those who work in the field of digital

forensics. This chapter summarises the work that was produced by this research, contrasts

the work with the initial aims and attempts to conclude from said results.

5.1 Key aspects

The main aims of this research, as described in section 1.1, can be summarised as the

following:

• Accessible: Orthrus must be easy to use for a diverse range of professionals having

various technical skills.

• Maintainable: Orthrus must be reasonable to maintain for contributors.

56

• Low investment; high yield: Investments, both in terms of finances and time, cannot

be too high compared to the yield one would expect from a tool such as Orthrus.

• Open-source: Orthrus must be open-source so that everyone may improve upon it

and scrutinise it. It can, therefore, not be a black box.

• Modular: Orthrus has to be built in a way that scripts written for it can be used in a

modular manner.

The rest of this section will briefly summarise the findings, draw conclusions from them

and contrast them to the original goals.

5.1.1 Development

The initial phase of the development was rather convoluted as previous methods were

very diverse. Many existing solutions had features that went against the main aims of this

project, such as not being accessible or maintainable enough. It was therefore concluded

that the final design had to take a rather different approach than previous works whilst still

appreciating this effort and acknowledging it.

The final design, as described in section 3.2, was made possible after a suitable platform

was found; both in terms of hardware and software. While not all the hardware devices

proposed were found to be suitable, one of the devices, namely the Adafruit Metro M4

Airlift Lite, suited the project well and could allow for future expansions (such as wireless

control described in 5.3.1).

The production and design of the parser was a major part of the design process as it is

indeed amajor part of Orthrus itself. It allows for quick and easy prototyping of automation

scripts without necessarily needing a lot of technical skills. The parser itself was designed

in such a way that it would not be a problem for future expansion, hence honouring the

goal of maintainability. The command set was designed to be as simple as possible while

still allowing for a wide range of functionality.

To enable Orthrus to be truly cross-platform, extensive testing and documentation of the

differences between the platform had to be done. While the syntax and how Orthrus

internally was not heavily impacted by testing on the different platforms, it was essential

57

to have at least tested that Orthrus perform identically on both platforms.

5.1.2 Forensics

As the focus of this research was Orthrus’ potential applications in the field of digital

forensics, a review of forensic artefacts had to be done. It was found that the baseline

system did indeed leave a trace. On Windows, changes could be seen in places such as

the registry and Event Viewer. This information included the product name of the Orthrus

device, namely Adafruit Metro M4 Airlift Lite, as well as manufacturer details and model

number. It was also possible to view the exact time when these forensic artefacts were

created.

Similarly, on Linux, it was possible to find the same kind of information, although with

much greater granularity. By looking through both/var/log/syslog and/var/log/dmesg,

it was possible to get a wide range of information. This information included very similar

entries as with Windows, but also additional information such as which specific commu-

nication ports were used. Timestamps were, as a result of this increased granularity, much

more numerous and detailed.

5.1.3 Applications

The Orthrus device was originally intended for applications in the field of digital forensics.

While this aim remained throughout the project, other applications were identified such

as penetration testing (or offensive security in general), setup automation and playtesting.

This came as a result of the design process focusing onmaking the Orthrus platform a solid

step towards automated data collection in digital forensics, and in the process of doing

so, all the basics for Orthrus to be used in alternative applications thus became possible.

Some examples of this can be seen in section 4.3. Expansion into further applications can

also result from the future work on Orthrus, of which is discussed in section 5.3.

58

5.2 Closing statements

In summary, this project has achieved its aims described in section 1.1. In addition to

creating a device, namely Orthrus, that can serve as an example of an open-source device

used for digital forensics, this project has also provided a platform capable of HID injection

that can be used in several fields; not only digital forensics. The research has also provided

a theoretical overview of future work and applications.

5.3 Future work

A number of features and improvements are in the works for Orthrus as well as fur-

ther investigations into the forensic side of Orthrus to make sure that it is forensically

sound.

5.3.1 Features

Some features that have been proposed to the further development of Orthrus, with a

focus on features that can make Orthrus even easier for non-technical users such as first

responders that may not be trained in the field of digital forensics.

Automatic obfuscation

As stated in section 3.6.1, obfuscation is necessary for a script not to bemarked asmalicious

by the anti-virus. However, having, for example, pre-obfuscated Powershell scripts can

prove to be not very user friendly, especially if such scripts have to be customised for a

particular system in order to run as intended.

Hence, some automatic obfuscation done by Orthrus that can make this part of one’s

operation less labour intensive is planned. Rudimentary research and implementation

have been tested, but so far, nothing that would make the process less labour intensive has

been formalised.

59

Screen control

Being a prototype, Orthrus can be improved by adding a light GUI by using a small screen.

This can allow a user to select scripts from a list rather than choosing from a set of buttons,

which is the current case. While this can bring additional setup requirements for the user,

there is a strong case to be made that it would enhance the user-friendliness of such a

device considerably.

Wifi enabled control

While having the possibility of controlling an Orthrus device wirelessly might sound

useful, the security aspect of having a device that may be used for forensic operations

would argue for that doing so is a bad idea. As discussed in section 2.3.4, one of the

reasons why this device cannot be deployed to a forensic environment is its reliance on

wireless connectivity, both for control and data transfer. Especially the latter can prove

to

However, by only enabling wireless control, many of the issues of having access to the

actual information that Orthrus may have been less problematic. Hence, implementing

wireless control predictably and securely may allow Orthrus to become even more user

friendly.

Multiline comments and strings

Most scripting languages have either multiline comments, multiline strings or both, while

Orthrus does not. The reason for this is an inherent weakness of parsing a script line by

line using a very simplified parser. To enable features such as these, however useful, may

prove to be a challenge. Indeed, a complete reevaluation of how Orthrus is parsing the

OSL scripts may be needed for such features to work reliably.

There is an argument to be made that further complicating the code defeats the purpose

of Orthrus being approachable as a project to contribute to, so decisions such as rewriting

the parser must be considered carefully.

60

Ducky Script to OSL conversion

Ducky Script, as mentioned in sections 2.3.2 and 2.3.1, is an established and widely

known way of facilitating HID injection. Therefore, to have a way of converting the

numerous scripts that are available to OSL would be very beneficial. Seeing the different

command sets of Ducky Script (table 2.1) and OSL (table 3.1), such a feature is not at

all an impossibility. This is because all of the commands that Ducky Script supports are

also supported by OSL. Hence, it should be only a matter of translating the commands

between the different scripts.

Gamepad support

HID devices are not just comprised of keyboards and mice. Gamepads are also a part of

the family of HID devices, and adding support for them in Orthrus is a planned feature.

This would allow a playtester, a scenario discussed in section 4.3.4, to further test their

game with hardware instead of software.

Device support

This project only considered three CircuitPython devices, as discussed in section 3.2.2,

but future work might entail getting Orthrus certified to work on more devices than just

the Metro M4 Airlift. Ideally, a device that is even cheaper than the aforementioned device

would be tested as it can enable more users to benefit from this project, as discussed in

section 1.1.3.

Additional keyboard layouts

A problem with Adafruit’s CircuitPython HID library is that it only supports the standard

US keyboard layout. This can obviously pose as a problem in situations where devices

are using not this keyboard layout as keystrokes are interpreted differently than from what

the user intended. On Adafruit’s CircuitPython HID library repository (Adafruit, 2020)

there is currently a pull request for adding the German keyboard. Also, the Norwegian

keyboard layout is expected to be added as a continuation of this project and to give back

to the open-source community.

61

5.3.2 Forensics

Further investigation into the forensic impact that Orthrus may have is needed. While

some forensic artefacts have already been discovered in section refssec:digital-forensics,

there are still methods that can be attempted to make sure that the forensic impact that

Orthrus has is properly documented and defined.

Research into how a user’s scripts can leave a forensic impact, such as the examples shown

in section 3.7, would be a valuable addition going forwards. While not every scenario

may be covered by such research, to give users an indication of how some actions might

impact the forensic soundness of a system may prove to be a great candidate for further

research.

62

References

Adafruit. Adafruit_CircuitPython_HID. Apr 2020. [Online; accessed 3. May 2020].

URL https://github.com/adafruit/AdafruitCircuitPythonHID

Adafruit Industries. Adafruit Feather 32u4 Adalogger. Apr 2020a. [Online; accessed

27. Apr. 2020].

URL https://www.adafruit.com/product/2795

Adafruit Industries. Adafruit Trinket M0 - for use with CircuitPython & Arduino IDE.

Apr 2020b. [Online; accessed 28. Apr. 2020].

URL https://www.adafruit.com/product/35001

Al-Kasassbeh, M., Mohammed, S., Alauthman, M., and Almomani, A. Feature

selection using a machine learning to classify a malware. In Handbook of Computer

Networks and Cyber Security, pages 889–904. Springer, 2020.

Altheide, C. and Carvey, H. Digital forensics with open source tools. Elsevier, 2011.

Anthony, S. Massive, undetectable security flaw found in USB: It’s time to get your PS/2

keyboard out of the cupboard - ExtremeTech. Jul 2014. [Online; accessed 4. May

2020].

URL https://www.extremetech.com/computing/187279-undetectable-

indefensible-security-flaw-found-in-usb-its-time-to-get-your-

ps2-keyboard-out-of-the-cupboard

63

https://github.com/adafruit/Adafruit_CircuitPython_HID
https://www.adafruit.com/product/2795
https://www.adafruit.com/product/35001
https://www.extremetech.com/computing/187279-undetectable-indefensible-security-flaw-found-in-usb-its-time-to-get-your-ps2-keyboard-out-of-the-cupboard
https://www.extremetech.com/computing/187279-undetectable-indefensible-security-flaw-found-in-usb-its-time-to-get-your-ps2-keyboard-out-of-the-cupboard
https://www.extremetech.com/computing/187279-undetectable-indefensible-security-flaw-found-in-usb-its-time-to-get-your-ps2-keyboard-out-of-the-cupboard

Arduboy. Arduboy. Apr 2020. [Online; accessed 27. Apr. 2020].

URL https://arduboy.com

Barnes, R. Make a Pi Zero W Smart USB flash drive — The MagPi magazine. May

2020. [Online; accessed 6. May 2020].

URL https://magpi.raspberrypi.org/articles/pi-zero-w-smart-usb-

flash-drive

Bohannon, D. Invoke-Obfuscation. Mar 2019. [Online; accessed 3. May 2020].

URL https://github.com/danielbohannon/Invoke-Obfuscation

Carrier, B. Open source digital forensics tools: The legal argument. Technical report,

stake, 2002.

Davidoff, S. Cleartext passwords in linux memory. Massachusetts institute of technology,

pages 1–13, 2008.

Dawes, R. P4wnP1. Dec 2018. [Online; accessed 2. May 2020].

URL https://github.com/RoganDawes/P4wnP1

Dawes, R. P4wnP1_aloa. Feb 2020. [Online; accessed 2. May 2020].

URL https://github.com/RoganDawes/P4wnP1{$$}aloa

Denney, K., Erdin, E., Babun, L., and Uluagac, A. S. Dynamically detecting usb attacks

in hardware: poster. In Proceedings of the 12th Conference on Security and Privacy in

Wireless and Mobile Networks, pages 328–329. 2019.

Does, T., Geist, D., and Van Bockhaven, C. Sdio as a new peripheral attack vector. 2016.

Fabian, M. Endpoint security: managing usb-based removable devices with the advent

of portable applications. In Proceedings of the 4th annual conference on Information

security curriculum development, pages 1–5. 2007.

Farhi, N., Nissim, N., and Elovici, Y. Malboard: A novel user keystroke impersonation

attack and trusted detection framework based on side-channel analysis. Computers &

Security, 85:240–269, 2019.

64

https://arduboy.com
https://magpi.raspberrypi.org/articles/pi-zero-w-smart-usb-flash-drive
https://magpi.raspberrypi.org/articles/pi-zero-w-smart-usb-flash-drive
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/RoganDawes/P4wnP1
https://github.com/RoganDawes/P4wnP1{$_$}aloa

GTFOBins. GTFOBins. Apr 2020. [Online; accessed 24. Apr. 2020].

URL https://gtfobins.github.io

Haffejee, J. and Irwin, B. Testing antivirus engines to determine their effectiveness as a

security layer. In 2014 Information Security for South Africa, pages 1–6. IEEE, 2014.

Hak5. Bash Bunny. May 2020a. [Online; accessed 1. May 2020].

URL https://shop.hak5.org/products/bash-bunny

Hak5. USB Rubber Ducky. May 2020b. [Online; accessed 4. May 2020].

URL https://shop.hak5.org/products/usb-rubber-ducky-deluxe

hak5darren. USB-Rubber-Ducky. Dec 2016. [Online; accessed 1. May 2020].

URL https://github.com/hak5darren/USB-Rubber-Ducky

Hatch, B., Lee, J., and Kurtz, G. Hacking Linux exposed: Linux security secrets &

solutions. Osborne/McGraw-Hill New York, 2001.

Hibshi, H., Vidas, T., and Cranor, L. Usability of forensics tools: a user study. In 2011

Sixth International Conference on IT Security Incident Management and IT Forensics,

pages 81–91. IEEE, 2011.

Howard, C. Systems maintenance programs-the forgotten foundation and support of the

cia triad. SANS Institute GSEC, 1(3), 2002.

Liao, X., Xie, X., and Jin, H. Sharing virtual usb device in virtualized desktop. In 2011

Fourth International Symposium on Parallel Architectures, Algorithms and Program-

ming, pages 156–160. IEEE, 2011.

Maltronics. Maltronics. May 2020. [Online; accessed 4. May 2020].

URL https://maltronics.com/collections/malduinos

Microchip Technology. Migrating from rs-232 to usb bridge specification. 2004.

URL http://ww1.microchip.com/downloads/en/appnotes/doc4322.pdf

Microsoft. Antimalware Scan Interface (AMSI) - Win32 apps. May 2020. [Online;

accessed 3. May 2020].

65

https://gtfobins.github.io
https://shop.hak5.org/products/bash-bunny
https://shop.hak5.org/products/usb-rubber-ducky-deluxe
https://github.com/hak5darren/USB-Rubber-Ducky
https://maltronics.com/collections/malduinos
http://ww1.microchip.com/downloads/en/appnotes/doc4322.pdf

URL https://docs.microsoft.com/en-us/windows/win32/amsi/

antimalware-scan-interface-portal

MITRE Corporation. Lateral Movement, Tactic TA0008 - Enterprise | MITRE

ATT&CK®. Apr 2020. [Online; accessed 6. May 2020].

URL https://attack.mitre.org/tactics/TA0008

Newlin, M. Injecting keystrokes into wireless mice. 2016.

PowerShellMafia. PowerSploit. Dec 2016. [Online; accessed 3. May 2020].

URL https://github.com/PowerShellMafia/PowerSploit

Seytonic. malduino. Sep 2017. [Online; accessed 1. May 2020].

URL https://github.com/Seytonic/malduino

Tardieu, S. What is the difference between /dev/ttyUSB and /dev/ttyACM? Mar 2018.

[Online; accessed 6. May 2020].

URL https://rfc1149.net/blog/2013/03/05/what-is-the-difference-

between-devttyusbx-and-devttyacmx

Technology,M. ATmega32U4 - 8-bit AVRMicrocontrollers. Apr 2020. [Online; accessed

27. Apr. 2020].

URL https://www.microchip.com/wwwproducts/en/ATmega32U4

Tey, C.M. A study of the imitation, collection and usability issues of keystroke biometrics.

2013a.

Tey, C.M. A study of the imitation, collection and usability issues of keystroke biometrics

[poster]. 2013b.

USB Implementers’ Forum. Universial serial bus (usb) - hid usage tables (v1.12). 2004.

URL https://www.usb.org/sites/default/files/documents/

hut112v2.pdf#page=53

Zhou, X., Xu, B., Qi, Y., and Li, J. Mrsi: A fast pattern matching algorithm for

anti-virus applications. In Seventh International Conference on Networking (icn 2008),

pages 256–261. IEEE, 2008.

66

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://attack.mitre.org/tactics/TA0008
https://github.com/PowerShellMafia/PowerSploit
https://github.com/Seytonic/malduino
https://rfc1149.net/blog/2013/03/05/what-is-the-difference-between-devttyusbx-and-devttyacmx
https://rfc1149.net/blog/2013/03/05/what-is-the-difference-between-devttyusbx-and-devttyacmx
https://www.microchip.com/wwwproducts/en/ATmega32U4
https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf#page=53
https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf#page=53

Zhou, Z., Zhang, W., Yang, Z., and Yu, N. Exfiltration of data from air-gapped networks

via unmodulated led status indicators. arXiv preprint arXiv:1711.03235, 2017.

67

Appendices

68

A
Code instructions

The code repository, along with instructions on how to set up Orthrus as well as run it,

may be found at the following URL:

https://github.com/vagnes/orthrus

69

https://github.com/vagnes/orthrus

B
Orthrus logo

Figure B.1: Orthrus logo made by Johannes Tomren Røsvik

70

C
Logs

Listing C.1: Indications in /var/log/dmesg for connecting an USB-drive to a Raspberry Pi

3 Raspbian 10 (buster).
1 [109113.988478] usb 1-1.4: new high-speed USB device ←↩

number 6 using dwc_otg
2 [109114.119379] usb 1-1.4: New USB device found, ←↩

idVendor=1908, idProduct=1320, bcdDevice= 0.00
3 [109114.119389] usb 1-1.4: New USB device strings: Mfr←↩

=1, Product=2, SerialNumber=3
4 [109114.119394] usb 1-1.4: Product: Disk
5 [109114.119399] usb 1-1.4: Manufacturer: USB
6 [109114.119403] usb 1-1.4: SerialNumber: 372748←↩

DE43515174
7 [109114.129404] usb-storage 1-1.4:1.0: USB Mass ←↩

Storage device detected
8 [109114.136193] usb-storage 1-1.4:1.0: Quirks match ←↩

for vid 1908 pid 1320: 20000
9 [109114.136348] scsi host0: usb-storage 1-1.4:1.0
10 [109114.213720] usbcore: registered new interface ←↩

driver uas
11 [109115.199052] scsi 0:0:0:0: Direct-Access USB ←↩

Disk 2.60 PQ: 0 ANSI: 2

71

12 [109115.204209] sd 0:0:0:0: [sda] 245760 512-byte ←↩
logical blocks: (126 MB/120 MiB)

13 [109115.204429] sd 0:0:0:0: [sda] Write Protect is off
14 [109115.204441] sd 0:0:0:0: [sda] Mode Sense: 0b 00 00←↩

08
15 [109115.204604] sd 0:0:0:0: [sda] No Caching mode page←↩

found
16 [109115.204611] sd 0:0:0:0: [sda] Assuming drive cache←↩

: write through
17 [109115.206709] sda:
18 [109115.208056] sd 0:0:0:0: [sda] Attached SCSI ←↩

removable disk
19 [109115.222564] sd 0:0:0:0: Attached scsi generic sg0 ←↩

type 0

Listing C.2: Indications in /var/log/syslog for connecting an USB-drive to a Raspberry Pi

3 running Raspbian 10 (buster).
1 May 5 18:18:04 raspberrypi rngd[332]: stats: Time ←↩

spent starving for entropy: (min=0; avg=0.000; max←↩
=0)us

2 May 5 18:36:30 raspberrypi kernel: [109113.988478] ←↩
usb 1-1.4: new high-speed USB device number 6 using←↩
dwc_otg

3 May 5 18:36:30 raspberrypi kernel: [109114.119379] ←↩
usb 1-1.4: New USB device found, idVendor=1908, ←↩
idProduct=1320, bcdDevice= 0.00

4 May 5 18:36:30 raspberrypi kernel: [109114.119389] ←↩
usb 1-1.4: New USB device strings: Mfr=1, Product←↩
=2, SerialNumber=3

5 May 5 18:36:30 raspberrypi kernel: [109114.119394] ←↩
usb 1-1.4: Product: Disk

6 May 5 18:36:30 raspberrypi kernel: [109114.119399] ←↩
usb 1-1.4: Manufacturer: USB

7 May 5 18:36:30 raspberrypi kernel: [109114.119403] ←↩
usb 1-1.4: SerialNumber: 372748DE43515174

8 May 5 18:36:30 raspberrypi kernel: [109114.129404] ←↩
usb-storage 1-1.4:1.0: USB Mass Storage device ←↩
detected

9 May 5 18:36:30 raspberrypi kernel: [109114.136193] ←↩
usb-storage 1-1.4:1.0: Quirks match for vid 1908 ←↩
pid 1320: 20000May 5 18:36:30 raspberrypi kernel: ←↩
[109114.136348] scsi host0: usb-storage 1-1.4:1.0

10 May 5 18:36:30 raspberrypi mtp-probe: checking bus 1,←↩
device 6: "/sys/devices/platform/soc/3f980000.usb/←↩
usb1/1-1/1-1.4"

11 May 5 18:36:30 raspberrypi mtp-probe: bus: 1, device:←↩
6 was not an MTP device

12 May 5 18:36:30 raspberrypi kernel: [109114.213720] ←↩
usbcore: registered new interface driver uas

13 May 5 18:36:30 raspberrypi mtp-probe: checking bus 1,←↩
device 6: "/sys/devices/platform/soc/3f980000.usb/←↩
usb1/1-1/1-1.4"

14 May 5 18:36:30 raspberrypi mtp-probe: bus: 1, device:←↩
6 was not an MTP device

15 May 5 18:36:31 raspberrypi kernel: [109115.199052] ←↩
scsi 0:0:0:0: Direct-Access USB Disk ←↩

2.60 PQ: 0 ANSI: 2

72

16 May 5 18:36:31 raspberrypi kernel: [109115.204209] sd←↩
0:0:0:0: [sda] 245760 512-byte logical blocks: ←↩
(126 MB/120 MiB)

17 May 5 18:36:31 raspberrypi kernel: [109115.204429] sd←↩
0:0:0:0: [sda] Write Protect is off

18 May 5 18:36:31 raspberrypi kernel: [109115.204441] sd←↩
0:0:0:0: [sda] Mode Sense: 0b 00 00 08

19 May 5 18:36:31 raspberrypi kernel: [109115.204604] sd←↩
0:0:0:0: [sda] No Caching mode page found

20 May 5 18:36:31 raspberrypi kernel: [109115.204611] sd←↩
0:0:0:0: [sda] Assuming drive cache: write through

21 May 5 18:36:31 raspberrypi kernel: [109115.206709] ←↩
sda:

22 May 5 18:36:31 raspberrypi kernel: [109115.208056] sd←↩
0:0:0:0: [sda] Attached SCSI removable disk

23 May 5 18:36:31 raspberrypi kernel: [109115.222564] sd←↩
0:0:0:0: Attached scsi generic sg0 type 0

24 May 5 18:36:32 raspberrypi systemd[1]: Created slice ←↩
system-clean\x2dmount\x2dpoint.slice.

25 May 5 18:36:32 raspberrypi systemd[1]: Started Clean ←↩
the /media/pi/TARGET mount point.

26 May 5 18:36:32 raspberrypi udisksd[357]: Mounted /dev←↩
/sda at /media/pi/TARGET on behalf of uid 1000

27 May 5 18:40:27 raspberrypi systemd[1]: proc-sys-fs-←↩
binfmt_misc.automount: Got automount request for /←↩
proc/sys/fs/binfmt_misc , triggered by 7143 (findmnt←↩
)

Listing C.3: Indications in /var/log/syslog for connecting an USB-drive to a Raspberry Pi

4 running Ubuntu 19.10.
1 May 5 19:14:31 rpi4 kernel: [12978.941242] usb 1-1.1:←↩

new full-speed USB device number 4 using xhci_hcd
2 May 5 19:14:31 rpi4 kernel: [12979.107379] usb 1-1.1:←↩

device descriptor read/all, error -32
3 May 5 19:14:31 rpi4 kernel: [12979.205243] usb 1-1.1:←↩

new full-speed USB device number 5 using xhci_hcd
4 May 5 19:14:31 rpi4 kernel: [12979.383472] usb 1-1.1:←↩

New USB device found, idVendor=239a, idProduct←↩
=8038, bcdDevice= 1.00

5 May 5 19:14:31 rpi4 kernel: [12979.383486] usb 1-1.1:←↩
New USB device strings: Mfr=2, Product=3, ←↩
SerialNumber=1

6 May 5 19:14:31 rpi4 kernel: [12979.383497] usb 1-1.1:←↩
Product: Metro M4 Airlift Lite

7 May 5 19:14:31 rpi4 kernel: [12979.383507] usb 1-1.1:←↩
Manufacturer: Adafruit Industries LLC

8 May 5 19:14:31 rpi4 kernel: [12979.383517] usb 1-1.1:←↩
SerialNumber: 7242B8072345733502020293A093B0FF

9 May 5 19:14:31 rpi4 kernel: [12979.406632] usb-←↩
storage 1-1.1:1.2: USB Mass Storage device detected

10 May 5 19:14:31 rpi4 kernel: [12979.407139] scsi host0←↩
: usb-storage 1-1.1:1.2

11 May 5 19:14:31 rpi4 kernel: [12979.442028] cdc_acm ←↩
1-1.1:1.0: ttyACM0: USB ACM device

12 May 5 19:14:31 rpi4 kernel: [12979.445003] usbcore: ←↩
registered new interface driver cdc_acm

13 May 5 19:14:31 rpi4 kernel: [12979.445009] cdc_acm: ←↩

73

USB Abstract Control Model driver for USB modems ←↩
and ISDN adapters

14 May 5 19:14:31 rpi4 kernel: [12979.464587] usbcore: ←↩
registered new interface driver usbhid

15 May 5 19:14:31 rpi4 kernel: [12979.464593] usbhid: ←↩
USB HID core driver

16 May 5 19:14:31 rpi4 kernel: [12979.536344] usbcore: ←↩
registered new interface driver snd-usb-audio

17 May 5 19:14:31 rpi4 kernel: [12979.552596] input: ←↩
Adafruit Industries LLC Metro M4 Airlift Lite ←↩
Keyboard as /devices/platform/scb/fd500000.pcie/←↩
pci0000:00/0000:00:00.0/0000:01:00.0/usb1←↩
/1-1/1-1.1/1-1.1:1.3/0003:239A:8038.0001/input/←↩
input0

18 May 5 19:14:31 rpi4 snapd[1289]: hotplug.go:199: ←↩
hotplug device add event ignored, enable ←↩
experimental.hotplug

19 May 5 19:14:32 rpi4 kernel: [12979.609707] input: ←↩
Adafruit Industries LLC Metro M4 Airlift Lite Mouse←↩
as /devices/platform/scb/fd500000.pcie/pci0000←↩
:00/0000:00:00.0/0000:01:00.0/usb1←↩
/1-1/1-1.1/1-1.1:1.3/0003:239A:8038.0001/input/←↩
input1

20 May 5 19:14:32 rpi4 kernel: [12979.610400] input: ←↩
Adafruit Industries LLC Metro M4 Airlift Lite ←↩
Consumer Control as /devices/platform/scb/fd500000.←↩
pcie/pci0000:00/0000:00:00.0/0000:01:00.0/usb1←↩
/1-1/1-1.1/1-1.1:1.3/0003:239A:8038.0001/input/←↩
input2

21 May 5 19:14:32 rpi4 kernel: [12979.610547] input: ←↩
Adafruit Industries LLC Metro M4 Airlift Lite as /←↩
devices/platform/scb/fd500000.pcie/pci0000←↩
:00/0000:00:00.0/0000:01:00.0/usb1←↩
/1-1/1-1.1/1-1.1:1.3/0003:239A:8038.0001/input/←↩
input3

22 May 5 19:14:32 rpi4 kernel: [12979.610696] hid-←↩
generic 0003:239A:8038.0001: input,hidraw0: USB HID←↩
v1.11 Keyboard [Adafruit Industries LLC Metro M4 ←↩
Airlift Lite] on usb -0000:01:00.0-1.1/input3

23 May 5 19:14:32 rpi4 systemd[1]: Reached target Sound ←↩
Card.

24 May 5 19:14:32 rpi4 kernel: [12980.414650] scsi host0←↩
: scsi scan: INQUIRY result too short (5), using 36

25 May 5 19:14:32 rpi4 kernel: [12980.414676] scsi ←↩
0:0:0:0: Direct-Access Adafruit Metro M4 ←↩
Airlift Lite 1.0 PQ: 0 ANSI: 2

26 May 5 19:14:32 rpi4 kernel: [12980.415797] sd ←↩
0:0:0:0: Attached scsi generic sg0 type 0

27 May 5 19:14:32 rpi4 kernel: [12980.421907] sd ←↩
0:0:0:0: [sda] 4089 512-byte logical blocks: (2.09 ←↩
MB/2.00 MiB)

28 May 5 19:14:32 rpi4 kernel: [12980.425989] sd ←↩
0:0:0:0: [sda] Write Protect is off

29 May 5 19:14:32 rpi4 kernel: [12980.425997] sd ←↩
0:0:0:0: [sda] Mode Sense: 03 00 00 00

30 May 5 19:14:32 rpi4 kernel: [12980.430567] sd ←↩
0:0:0:0: [sda] No Caching mode page found

31 May 5 19:14:32 rpi4 kernel: [12980.435998] sd ←↩
0:0:0:0: [sda] Assuming drive cache: write through

32 May 5 19:14:32 rpi4 kernel: [12980.479398] sda: sda1
33 May 5 19:14:32 rpi4 kernel: [12980.508470] sd ←↩

74

0:0:0:0: [sda] Attached SCSI removable disk

75

	Abstract
	Acknowledgements
	Introduction
	Aims
	Accessible
	Maintainable
	Low investment; high yield
	Open-source
	Modular

	Scope and limitations
	Methodology
	Document conventions
	Document structure

	Literature review
	Human interface device (HID)
	HID injection
	Injection categories

	Forensic process
	Good practices

	Similar efforts
	MalDuino
	USB Rubber Ducky
	Bash Bunny
	P4wnP1

	Past research
	Summary

	Design
	Initial design proposal
	Raspberry Pi Zero W
	Arduboy
	Adafruit Feather Adalogger

	Final design proposal
	CircuitPython
	Development boards

	Templating
	Configuration files

	OSL
	Parser
	OSL commandset
	Keycode command
	Consumer control code command
	String command
	Looping command
	Variables
	OSL fragments
	Mouse commands
	External payload command
	Sleep command
	Printing to serial

	Control
	Automatic
	Simple

	Platform specifics
	Windows
	Linux
	A world without root

	Example scripts
	Gain root shell in Windows
	Fast gather
	Mouse wiggler

	Summary

	Discussion
	Testing
	Design
	Hardware
	Platform
	Unidirectionality of communication
	Defined behaviour
	Software
	OSL

	Applications
	Digital forensics
	Penetration testing
	Setup automation
	Playtesting

	Reaching aims
	The user aspect
	Maintainability
	Open-source

	Summary

	Conclusion
	Key aspects
	Development
	Forensics
	Applications

	Closing statements
	Future work
	Features
	Forensics

	References
	Appendices
	Code instructions
	Orthrus logo
	Logs

